Turn off MathJax
Article Contents
Yu Zhang, Qingguang Zhu, Yaqi Zhao, Xin Yang, Ling Jiang. Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210150
Citation: Yu Zhang, Qingguang Zhu, Yaqi Zhao, Xin Yang, Ling Jiang. Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210150

Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles

doi: 10.1063/1674-0068/cjcp2210150
More Information
  • Corresponding author: E-mail: ljiang@dicp.ac.cn
  • Received Date: 2022-10-21
  • Accepted Date: 2022-12-09
  • Available Online: 2022-12-10
  • Spinel-type CuFe2O4 nanoparticles were synthesized by a solvothermal method using ethylene glycol as solvent and polyvinylpyrrolidone (PVP) as dispersant. The characterization results showed that the average diameter of the hollow-spherical CuFe2O4 was approximately 100 nm with homogeneous morphology and negligible agglomeration. CuFe2O4 was used as the active electrode material to explore its supercapacitive properties in different concentrations of KOH electrolytes. It was found that the CuFe2O4 hollow-spherical nanoparticles exhibit potential electronic performance in supercapacitor, with a specific capacitance of 368.2 F/g and capacitance stability retention of 91.0% after 2000 cycles at the current density of 5 A/g in 3 mol/L KOH electrolyte. The present findings demonstrate that the CuFe2O4 electrode materials can have important implications with practical prospects in energy storage systems.


  • loading
  • [1]
    X. Wei, B. Liu, Z. Chen, K. Wu, Y. Liu, X. Yuan, X. Zhang, X. Liu, Q. Wan, and Y. Song, Energy Storage Mater. 51, 815 (2022). doi: 10.1016/j.ensm.2022.07.022
    J. Xu, Z. Dong, K. Huang, L. Wang, Z. Wei, L. Yu, and X. Wu, Scr. Mater. 209, 114368 (2022). doi: 10.1016/j.scriptamat.2021.114368
    J. Xu, Y. Liu, P. Chen, A. Wang, K. J. Huang, L. Fang, and X. Wu, J. Colloid Interface Sci. 620, 119 (2022). doi: 10.1016/j.jcis.2022.04.009
    H. Liu, Y. He, K. Cao, Y. Jiang, X. Liu, Q. S. Jing, and L. Jiao, Chem. Eng. J. 433, 133572 (2022). doi: 10.1016/j.cej.2021.133572
    J. Xu, Q. Liu, Z. Dong, L. Wang, X. Xie, Y. Jiang, Z. Wei, Y. Gao, Y. Zhang, and K. Huang, ACS App. Mater. Inter. 13, 54974 (2021). doi: 10.1021/acsami.1c15484
    L. Li, Q. Zhang, B. He, R. Pan, Z. Wang, M. Chen, Z. Wang, K. Yin, Y. Yao, L. Wei, and L. Sun, Adv. Mater. 34, e2104327 (2022). doi: 10.1002/adma.202104327
    X. Xia, C. F. Du, S. Zhong, Y. Jiang, H. Yu, W. Sun, H. Pan, X. Rui, and Y. Yu, Adv. Funct. Mater. 32, 2110280 (2021). doi: 10.1002/adfm.202110280
    M. Wan, R. Zeng, J. Meng, Z. Cheng, W. Chen, J. Peng, W. Zhang, and Y. Huang, Nano-Micro Lett. 14, 9 (2021). doi: 10.1007/s40820-021-00742-z
    Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan, J. Dong, L. Mai, and D. L. Peng, Nano-Micro Lett. 13, 55 (2021). doi: 10.1007/s40820-020-00567-2
    C. Li, T. Zhao, X. Feng, S. Liu, L. Li, R. Zha, Y. Zhang, and Z. Zhang, J. Alloys Compd. 859, 157815 (2021). doi: 10.1016/j.jallcom.2020.157815
    S. Zheng, Q. Li, H. Xue, H. Pang, and Q. Xu, Nat. Rev. Chem. 7, 305 (2020).
    K.-B. Wang, Q. Xun, and Q. Zhang, Energychem 2, 100025 (2020). doi: 10.1016/j.enchem.2019.100025
    Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, and H. Pang, Angew. Chem. Int. Ed. 60, 25318 (2021). doi: 10.1002/anie.202112381
    C. Yang, R. Gao, and H. Yang, Energychem 3, 100062 (2021). doi: 10.1016/j.enchem.2021.100062
    P. Geng, M. Du, C. Wu, T. Luo, Y. Zhang, and H. Pang, Inorg. Chem. Front. 9, 2389 (2022). doi: 10.1039/D2QI00392A
    C. Li, J. Balamurugan, D. C. Nguyen, N. H. Kim, and J. H. Lee, ACS App. Mater. Inter. 12, 21505 (2020). doi: 10.1021/acsami.9b23346
    H. Gao, S. Xin, and J. B. Goodenough, Chem 3, 26 (2017). doi: 10.1016/j.chempr.2017.06.008
    D. Yang, M. Z. Su, H. J. Zheng, Z. Zhao, G. Li, X. T. Kong, H. Xie, H. J. Fan, W. Q. Zhang, and L. Jiang, Chin. J. Chem. Phys. 32, 223 (2019). doi: 10.1063/1674-0068/cjcp1902032
    K. Cao, Y. Jia, S. Wang, K. J. Huang, and H. Liu, J. Alloys Compd. 854, 157179 (2021). doi: 10.1016/j.jallcom.2020.157179
    D. Yang, M. Z. Su, H. J. Zheng, Z. Zhao, X. T. Kong, G. Li, H. Xie, W. Q. Zhang, H. J. Fan, and L. Jiang, Chin. J. Chem. Phys. 33, 160 (2020). doi: 10.1063/1674-0068/cjcp1910175
    Q. Zhang, D. Gu, H. Li, Z. Xu, H. Sun, J. Li, L. Wang, and L. Shen, Electrochim. Acta 367, 137455 (2021). doi: 10.1016/j.electacta.2020.137455
    V. S. Zhandun and A. V. Nemtsev, Mater. Chem. Phys. 259, 124065 (2021). doi: 10.1016/j.matchemphys.2020.124065
    J. Bejar, F. Espinosa-Magana, M. Guerra-Balcazar, J. Ledesma-Garcia, L. Alvarez-Contreras, N. Arjona, and L. G. Arriaga, ACS App. Mater. Inter. 12, 53760 (2020). doi: 10.1021/acsami.0c14920
    B. Sriram, J. N. Baby, S. F. Wang, M. George, X. B. Joseph,and J. T. Tsai, ACS Appl. Electron. Mater. 3, 362 (2021). doi: 10.1021/acsaelm.0c00906
    N. Stüsser, M. Reehuis, M. Tovar, B. Klemke, A. Hoser, and J. U. Hoffmann, J. Magn. Magn. Mater. 506, 166683 (2020). doi: 10.1016/j.jmmm.2020.166683
    C. W. Cady, G. Gardner, Z. O. Maron, M. Retuerto, Y. B. Go, S. Segan, M. Greenblat, and G. C. Dismukes, ACS Catal. 5, 3403 (2015). doi: 10.1021/acscatal.5b00265
    H. X. Zhong, Y. Zhang, and X. B. Zhang, Chem 4, 196 (2018). doi: 10.1016/j.chempr.2018.01.015
    Y. Yang, J. Liu, J. Ding, Y. Yu, and J. Zhang, J. Hazard. Mater. 424, 127556 (2022). doi: 10.1016/j.jhazmat.2021.127556
    M. Zhu, D. Meng, C. Wang, and G. Diao, ACS App. Mater. Inter. 5, 6030 (2013). doi: 10.1021/am4007353
    W. Zhang, S. Feng, J. Ma, F. Zhu, and S. Komarneni, Environ. Sci. Pollut. Res. Int. 29, 67003 (2022). doi: 10.1007/s11356-022-20500-x
    Y. Zhang, T. Wei, K. Xu, Z. Ren, L. Xiao, J. Song, and F. Zhao, RSC Adv. 5, 75630 (2015). doi: 10.1039/C5RA12199J
    S. B. Bandgar, M. M. Vadiyar, U. P. Suryawanshi, C. L. Jambhale, J. H. Kim, and S. S. Kolekar, Mater. Lett. 279, 128514 (2020). doi: 10.1016/j.matlet.2020.128514
    X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang, and M. Chen, J. Mater. Sci. 53, 2648 (2017).
    Y. Guo, Y. Chen, X. Hu, Y. Yao, and Z. Li, Colloids Surf. A: Physicochem. Eng. Asp. 631, 127676 (2021). doi: 10.1016/j.colsurfa.2021.127676
    L. Zhang, D. Shi, T. Liu, M. Jaroniec, and J. Yu, Mater. Today 25, 35 (2019). doi: 10.1016/j.mattod.2018.11.002
    E. H. Lee, E. B. Kim, M. S. Akhtar, and S. Ameen, Ceram. Int. 48, 16667 (2022). doi: 10.1016/j.ceramint.2022.02.213
    J. Kim, A. I. Inamdar, Y. Jo, S. Cho, A. T. A. Ahmed, B. Hou, S. N. Cha, T. G. Kim, H. Kim, and H. Im, J. Mater. Chem. A 8, 13459 (2020). doi: 10.1039/D0TA01728K
    B. Saravanakumar, S. P. Ramachandran, G. Ravi, V. Ganesh, R. K. Guduru, and R. Yuvakkumar, Vacuum 168, 108798 (2019). doi: 10.1016/j.vacuum.2019.108798
    J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, and Q. Xue, CrystEngComm 14, 5879 (2012). doi: 10.1039/c2ce25684c
    W. Liang, W. Yang, S. Sakib, and I. Zhitomirsky, Molecules 27, 5313 (2022). doi: 10.3390/molecules27165313
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (343) PDF downloads(22) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint