Turn off MathJax
Article Contents
Min Hu, Ke Ye, Jun Jiang, Guozhen Zhang. Solvent Effect of Water on the UV-B Absorption of Plant Sunscreen Agents[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210146
Citation: Min Hu, Ke Ye, Jun Jiang, Guozhen Zhang. Solvent Effect of Water on the UV-B Absorption of Plant Sunscreen Agents[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210146

Solvent Effect of Water on the UV-B Absorption of Plant Sunscreen Agents

doi: 10.1063/1674-0068/cjcp2210146
More Information
  • Corresponding author: Email: guozhen@ustc.edu.cn
  • Received Date: 2022-10-10
  • Accepted Date: 2023-01-11
  • Available Online: 2023-02-11
  • UV-B (280–320 nm) sunscreening is crucial for lives on Earth. Examining the role of surrounding of UV-B screening molecules can help us better understand UV-B absorption. Water is ubiquitous in cells as the solvent, but its impacts on UV-B absorption of sunscreen agents are underexplored. Herein, we report a first-principle study on UV-B absorption of sinapate esters (SM) and relevant molecular species, with a focus on the solvent effect of water. The capability of UV-B screening by anions of SM, the proposed species for actual sunscreening, is shaped by water. Both the implicit water providing the dielectric environment of solvation and the explicit water molecules forming hydrogen bonding to SM anion can appreciably alter the nature of transition orbitals responsible to the UV-B absorption of the anion. Finally, we find the molecular dipole moment of an organic UV-B screening agent can be an indicator of its UV-B screening sensitivity to the surrounding water. Our work may serve as a starting point of developing new water-soluble UV-B screening agent.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    É. Pelletier, P. Sargian, J. Payet, and S. Demers, Photochem. Photobiol. 82, 981 (2006). doi: 10.1562/2005-09-18-RA-688.1
    [2]
    M. Zhang, Y. Chu, Z. Wu, Y. Guo, Y. Shi, C. Wang, M. Wang, Y. Zhong, H. Zhang, Y. Wang, J. Wang, and G. Zhao, Chin. J. Chem. Phys. 36 , 25 (2023). doi: 10.1063/1674-0068/cjcp2104078
    [3]
    S. Lautenschlager, H. C. Wulf, and M. R. Pittelkow, Lancet 370, 528 (2007). doi: 10.1016/S0140-6736(07)60638-2
    [4]
    M. M. Caldwell, R. Robberecht, and S. D. Flint, Physiol. Plant 58, 445 (1983). doi: 10.1111/j.1399-3054.1983.tb04206.x
    [5]
    T. A. Day, T. C. Vogelmann, and E. H. DeLucia, Oecologia 513, 92 (1992). doi: 10.1007/BF00317843
    [6]
    L. C. Landry, C. C. S. Chapple, and R. L. Last, Plant Physiol. 109, 1159 (1995). doi: 10.1104/pp.109.4.1159
    [7]
    M. D. Horbury, E. L. Holt, L. M. M. Mouterde, P. Balaguer, J. Cebrian, L. Blasco, F. Allais, and V. G. Stavros, Nat. Commun. 10, 4748 (2019). doi: 10.1038/s41467-019-12719-z
    [8]
    M. D. Horbury, A. L. Flourat, S. E. Greenough, F. Allais, and V. G. Stavros, Chem. Commun. 54, 936 (2018). doi: 10.1039/C7CC09061G
    [9]
    M. Ruegger and C. Chapple, Genetics 159, 1741 (2001). doi: 10.1093/genetics/159.4.1741
    [10]
    C. C. Chapple, T. Vogt, B. E. Ellis, and C. R. Somerville, Plant Cell 4, 1413 (1992). doi: 10.1105/tpc.4.11.1413
    [11]
    J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, and T. S. Zwier, J. Am. Chem. Soc. 136, 14780 (2014). doi: 10.1021/ja5059026
    [12]
    J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, and K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083
    [13]
    L. L. Jiang, W. L. Liu, Y. F. Song, X. He, Y. Wang, H. L. Wu, and Y. Q. Yang, Chin. J. Chem. Phys. 25, 577 (2012). doi: 10.1088/1674-0068/25/05/577-584
    [14]
    Z. R. Wang, L. X. Zhu, X. L. Zhang, B. Li, Y. L. Liu, Y. F. Wan, Q. Li, Y. Wan, H. Yin, and Y. Shi, Chin. J. Chem. Phys. 35, 289 (2022). doi: 10.1063/1674-0068/cjcp2111251
    [15]
    J. Li, C. K. Wang, and Y. Z. Song, Chin. J. Chem. Phys. 30, 63 (2017). doi: 10.1063/1674-0068/30/cjcp1607142
    [16]
    Y. G. Ermakova, T. Sen, Y. A. Bogdanova, A. Y. Smirnov, N. S. Baleeva, A. I. Krylov, and M. S. Baranov, J. Phys. Chem. Lett. 9, 1958 (2018). doi: 10.1021/acs.jpclett.8b00512
    [17]
    B. Dereka, D. Svechkarev, A. Rosspeintner, A. Aster, M. Lunzer, R. Liska, A. M. Mohs, and E. Vauthey, Nat. Commun. 11, 1925 (2020). doi: 10.1038/s41467-020-15681-3
    [18]
    B. Dereka, A. Rosspeintner, M. Krzeszewski, D. T. Gryko, and E. Vauthey, Angew. Chem. Int. Ed. 55, 15624 (2016). doi: 10.1002/anie.201608567
    [19]
    B. Dereka and E. Vauthey, J. Phys. Chem. Lett. 8, 3927 (2017). doi: 10.1021/acs.jpclett.7b01821
    [20]
    H. Song, K. Wang, Z. Kuang, Y. S. Zhao, Q. Guo, and A. Xia, Phys. Chem. Chem. Phys. 21, 3894 (2019). doi: 10.1039/C8CP06459H
    [21]
    K. S. Kjaer, K. Kunnus, T. C. B. Harlang, T. B. Van Driel, K. Ledbetter, R. W. Hartsock, M. E. Reinhard, S. Koroidov, L. Li, M. G. Laursen, E. Biasin, F. B. Hansen, P. Vester, M. Christensen, K. Haldrup, M. M. Nielsen, P. Chabera, Y. Liu, H. Tatsuno, C. Timm, J. Uhlig, V. Sundstom, Z. Nemeth, D. S. Szemes, E. Bajnoczi, G. Vanko, R. Alonso-Mori, J. M. Glownia, S. Nelson, M. Sikorski, D. Sokaras, H. T. Lemke, S. E. Canton, K. Warnmark, P. Persson, A. A. Cordones, and K. J. Gaffney, Phys. Chem. Chem. Phys. 20, 4238 (2018). doi: 10.1039/C7CP07838B
    [22]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. , J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C. 01, Wallingford, CT: Gaussian Inc., (2019).
    [23]
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). doi: 10.1103/PhysRevB.37.785
    [24]
    A. D. Becke, J. Chem. Phys. 98, 5648 (1992). doi: 10.1063/1.464913
    [25]
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi: 10.1021/j100096a001
    [26]
    R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. 109, 8218 (1998). doi: 10.1063/1.477483
    [27]
    J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). doi: 10.1039/b810189b
    [28]
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). doi: 10.1021/cr9904009
    [29]
    R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, J. Chem. Phys. 125, 054103 (2006). doi: 10.1063/1.2222364
    [30]
    L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, J. Comput. Chem. 30, 2157 (2009). doi: 10.1002/jcc.21224
    [31]
    J. J. P. Stewart, J. Comput. Aided Mol. Des. 4, 1 (1990). doi: 10.1007/BF00128336
    [32]
    T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [33]
    J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083
    [34]
    B. Smyk and R. Drabent, Analyst 114, 723 (1989). doi: 10.1039/an9891400723
    [35]
    G. J. Brealey and M. Kasha, J. Am. Chem. Soc. 77, 4462 (1955). doi: 10.1021/ja01622a006
    [36]
    M. Kasha, Discuss. Faraday Soc. 9, 14 (1950). doi: 10.1039/DF9500900014
    [37]
    D. Vuckovic, A. I. Tinoco, L. Ling, C. Renicke, J. R. Pringle, and W. A. Mitch, Science 376, 644 (2022). doi: 10.1126/science.abn2600
    [38]
    C. X. Li, W. W. Guo, B. B. Xie, and G. Cui, J. Chem. Phys. 145, 074308 (2016). doi: 10.1063/1.4961261
    [39]
    X. P. Chang, L. Yu, T. S. Zhang, and G. Cui, Phys. Chem. Chem. Phys. 24, 13293 (2022). doi: 10.1039/D2CP01263D
    [40]
    N. G. K. Wong, J. A. Berenbeim, M. Hawkridge, E. Matthews, and C. E. H. Dessent, Phys. Chem. Chem. Phys. 21, 14311 (2019). doi: 10.1039/C8CP06794E
    [41]
    L. Beyere, S. Yarasi, and G. Loppnow, J. Raman Spectrosc. 34, 743 (2003). doi: 10.1002/jrs.1042
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (290) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return