Turn off MathJax
Article Contents
Jian Chang, Yiming Kuai, Xian Wei, Hui Yu, Hai Lan. Molecular Potential Energy Computation via Graph Edge Aggregate Attention Neural Network[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209136
Citation: Jian Chang, Yiming Kuai, Xian Wei, Hui Yu, Hai Lan. Molecular Potential Energy Computation via Graph Edge Aggregate Attention Neural Network[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209136

Molecular Potential Energy Computation via Graph Edge Aggregate Attention Neural Network

doi: 10.1063/1674-0068/cjcp2209136
More Information
  • Corresponding author: E-mail: lanhai09@fjirsm.ac.cn
  • Received Date: 2022-09-16
  • Accepted Date: 2022-12-06
  • Available Online: 2022-12-13
  • Accurate potential energy surface (PES) calculation is the basis of molecular dynamics research. Using deep learning (DL) methods can improve the speed of PES calculation while achieving competitive accuracy to ab initio methods. However, the performance of DL model is extremely sensitive to the distribution of training data. Without sufficient training data, the DL model suffers from overfitting issues that lead to catastrophic performance degradation on unseen samples. To solve this problem, based on the message passing paradigm of graph neural networks, we innovatively propose an edge-aggregate-attention mechanism, which specifies the weight based on node and edge information. Experiments on MD17 and QM9 datasets show that our model not only achieves higher PES calculation accuracy but also has better generalization ability, compare with Schnet, which demonstrates that edge-aggregate-attention can better capture the inherent features of equilibrium and non-equilibrium molecular conformations.

     

  • loading
  • [1]
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). doi: 10.1103/PhysRev.140.A1133
    [2]
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). doi: 10.1103/PhysRevLett.55.2471
    [3]
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985). doi: 10.1103/PhysRevB.31.5262
    [4]
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). doi: 10.1103/PhysRevB.29.6443
    [5]
    A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998). doi: 10.1021/jp973084f
    [6]
    A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001). doi: 10.1021/jp004368u
    [7]
    B. Jiang, J. Li, and H. Guo, J. Phys. Chem. Lett. 11, 5120 (2020). doi: 10.1021/acs.jpclett.0c00989
    [8]
    S. Manzhos and T. Carrington Jr., Chem. Rev. 121, 10187 (2020). doi: 10.1021/acs.chemrev.0c00665
    [9]
    P. L. Kang, C. Shang, and Z. P. Liu, Acc. Chem. Res. 53, 2119 (2020). doi: 10.1021/acs.accounts.0c00472
    [10]
    J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). doi: 10.1103/PhysRevLett.98.146401
    [11]
    B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013). doi: 10.1063/1.4817187
    [12]
    Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26 (2010). doi: 10.1021/ct9004917
    [13]
    R. Chen, K. Shao, B. Fu, and D. H. Zhang, J. Chem. Phys. 152, 204307 (2020). doi: 10.1063/5.0010104
    [14]
    L. Xiaoxiao, C. Shang, L. Li, R. Chen, B. Fu, X. Xu, and D. Zhang, Nat. Commun. 13, 4427 (2022). doi: 10.1038/s41467-022-32191-6
    [15]
    J. Han, L. Zhang, R. Car, and E. Weinan, Commun. Comput. Phys. 23, 629 (2018). doi: 10.4208/cicp.OA-2017-0213
    [16]
    Y. Zhang, C. Hu, and B. Jiang, J. Phys. Chem. Lett. 10, 4962 (2019). doi: 10.1021/acs.jpclett.9b02037
    [17]
    S. Foiles, M. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986). doi: 10.1103/PhysRevB.33.7983
    [18]
    V. Zaverkin and J. Kästner, J. Chem. Theory Comput. 16, 5410 (2020). doi: 10.1021/acs.jctc.0c00347
    [19]
    H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, in Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada ((2019)).
    [20]
    K. Liu, X. Sun, L. Jia, J. Ma, H. Xing, J. Wu, H. Gao, Y. Sun, F. Boulnois, and J. Fan, Int. J. Mol. Sci. 20, 3389 (2019). doi: 10.3390/ijms20143389
    [21]
    W. Jin, R. Barzilay, and T. Jaakkola, Inernational Conference on Machine Learning, PMLR, 2323–2332 (2018).
    [22]
    T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh, Bioinformatics 37, 1140 (2021). doi: 10.1093/bioinformatics/btaa921
    [23]
    K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, Nat. Commun. 8, 1 (2017). doi: 10.1038/s41467-016-0009-6
    [24]
    W. Jin, R. Barzilay, and T. Jaakkola, in Proceedings of the 35th International Conference on Machine Learning, Long Beach, California, USA, (2018).
    [25]
    K. Schütt, O. Unke, and M. Gastegger, Internation Conference on Machine Learning, PMLR, 9377–9388 (2021).
    [26]
    Y. Zhang, J. Xia, and B. Jiang, J. Chem. Phys. 156, 114801 (2022). doi: 10.1063/5.0080766
    [27]
    O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K. R. Müller, Nat. Commun. 12, 1 (2021). doi: 10.1038/s41467-020-20314-w
    [28]
    P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, International Conference on Learning Representations, (2018).
    [29]
    Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo, K. Chen, H. Jiang, and M. Zheng, J. Med. Chem. 63, 8749 (2020). doi: 10.1021/acs.jmedchem.9b00959
    [30]
    C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green, R. Barzilay, and K. F. Jensen, Chem. Sci. 10, 370 (2019). doi: 10.1039/C8SC04228D
    [31]
    A. Y. T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks, Npj Comput. Mater. 7, 1 (2021). doi: 10.1038/s41524-020-00473-6
    [32]
    S. Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song, F. Liu, and J. Hu, Phys. Chem. Chem. Phys. 22, 18141 (2020). doi: 10.1039/D0CP01474E
    [33]
    K. Schütt, P. J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and K. R. Müller, in Advances in Neural Information Processing Systems 30, Long Beach, CA, USA ((2017)).
    [34]
    K. T. Schütt, H. E. Sauceda, P -J. Kindermans, A. Tkatchenko, and K. R. Müller, J. Chem. Phys. 148, 241722 (2018). doi: 10.1063/1.5019779
    [35]
    O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15, 3678 (2019). doi: 10.1021/acs.jctc.9b00181
    [36]
    D. P. Kingma and J. Ba, in 3rd International Conference on Learning Representations, San Diego, CA, USA, (2015).
    [37]
    I. Loshchilov and F. Hutter, in 5th International Conference on Learning Representations, Toulon, France, (2017).
    [38]
    S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K. R. Müller, Sci. Adv 3, e1603015 (2017). doi: 10.1126/sciadv.1603015
    [39]
    R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, Sci. Data 1, 1 (2014). doi: 10.1038/sdata.2014.22
    [40]
    L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J. L. Reymond, J. Chem. Inf. Model. 52, 2864 (2012). doi: 10.1021/ci300415d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (356) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return