Turn off MathJax
Article Contents
Ruixiang Wu, Xin Liu, Xiaoshuai Wang, Jingjing Luo, Bin Li, Shengzhi Wang, Xiangyang Miao. Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208129
Citation: Ruixiang Wu, Xin Liu, Xiaoshuai Wang, Jingjing Luo, Bin Li, Shengzhi Wang, Xiangyang Miao. Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208129

Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy

doi: 10.1063/1674-0068/cjcp2208129
More Information
  • Zero-dimensional environmentally friendly carbon quantum dots (CQDs) combined with two-dimensional materials have a wide range of applications in optoelectronic devices. We combined steady-state and transient absorption spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide (MoS2). Transient absorption plots showed photoinduced absorption and stimulated emission features, which involved the intrinsic and defect states of CQDs. Adding MoS2 to CQDs solution, the lowest unoccupied molecular orbital of CQDs transferred energy to MoS2, which quenched the intrinsic emission at 390 nm. With addition of MoS2, CQDs-MoS2 composites quenched defect emission at 490 nm and upward absorption, which originated from another energy transfer from the defect state. Two energy transfer paths between CQDs and MoS2 were efficiently manipulated by changing the concentration of MoS2, which laid a foundation for improving device performance.

     

  • loading
  • [1]
    R. Xu, B. Huang, T. Wang, Y. Yuan, L. Zhang, C. Lu, Y. Cui, and J. Zhang, Superlattices Microstruct. 111, 665 (2017). doi: 10.1016/j.spmi.2017.07.017
    [2]
    F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, Science 373, 8541 (2021). doi: 10.1126/science.aaz8541
    [3]
    N. Nekić, J. Sancho-Parramon, I. Bogdanović-Radović, J. Grenzer, R. Hübner, S. Bernstorff, M. Ivanda, and M. Buljan, Nanophotonics 6, 1055 (2017). doi: 10.1515/nanoph-2016-0133
    [4]
    S. Armaković and S. J. Armaković, J. Phys. Chem. Solids 98, 156 (2016). doi: 10.1016/j.jpcs.2016.07.006
    [5]
    Y. Wu, C. Ma, Y. Chen, B. Mortazavi, Z. Lu, X. Zhang, K. Xu, H. Zhang, W. Liu, T. Rabczuk, H. Zhu, Z. Fang, and R. Zhang, Mater. Today Phys. 12, 100164 (2020). doi: 10.1016/j.mtphys.2019.100164
    [6]
    M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, ACS Photonics 2, 288 (2015). doi: 10.3390/photonics2010288
    [7]
    D. Ke, L. Z. Sui, D. L. Liu, J. Q. Cui, Y. F. Zhang, Q. Y. Li, S. Y. Li, Y. F. Jiang, A. M. Chen, J. L. Song, and M. X. Jin, Chin. J. Chem. Phys. 31, 277 (2018).
    [8]
    B. V. Senkovskiy, M. Pfeiffer, S. K. Alavi, A. Bliesener, J. Zhu, S. Michel, A. V. Fedorov, R. German, D. Hertel, D. Haberer, L. Petaccia, F. R. Fischer, K. Meerholz, P. H. M. van Loosdrecht, K. Lindfors, and A. Gruneis, Nano Lett. 17, 4029 (2017). doi: 10.1021/acs.nanolett.7b00147
    [9]
    B. Ullrich, H. Xi, and J. S. Wang, Appl. Phys. Lett. 108, 083110 (2016).
    [10]
    I. Y. Goryacheva, A. V. Sapelkin, and G. B. Sukhorukov, Trends Anal. Chem. 90, 27 (2017). doi: 10.1016/j.trac.2017.02.012
    [11]
    M. J. Molaei, Sol. Energy 196, 549 (2020). doi: 10.1016/j.solener.2019.12.036
    [12]
    V. A. Öberg, X. Zhang, M. B. Johansson, and E. M. J. Johansson, ChemNanoMat 4, 1223 (2018). doi: 10.1002/cnma.201800263
    [13]
    Y. Yang, D. Li, C. Li, Y. Liu, and K. Jiang, J. Hazard. Mater. 341, 93 (2018). doi: 10.1016/j.jhazmat.2017.07.052
    [14]
    L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, J. Phys. Chem. Lett. 8, 3371 (2017). doi: 10.1021/acs.jpclett.7b00885
    [15]
    C. Y. Han, H. S. Kim, and H. Yang, Materials 13, 897 (2020). doi: 10.3390/ma13040897
    [16]
    H. Wu, Z. Kang, Z. Zhang, Z. Zhang, H. Si, Q. Liao, S. Zhang, J. Wu, X. Zhang, and Y. Zhang, Adv. Funct. Mater. 28, 1802015 (2018). doi: 10.1002/adfm.201802015
    [17]
    F. I. Alzakia and S. C. Tan, Adv. Sci. 8, 2003864 (2021). doi: 10.1002/advs.202003864
    [18]
    Y. Huang, H. Zang, J. S. Chen, E. A. Sutter, P. W. Sutter, C. Y. Nam, and M. Cotlet, Appl. Phys. Lett. 108, 123502 (2016). doi: 10.1063/1.4944781
    [19]
    T. Bai, B. Yang, J. Chen, D. Zheng, Z. Tang, X. Wang, Y. Zhao, R. Lu, and K. Han, Adv. Mater. 33, 2007215 (2021). doi: 10.1002/adma.202007215
    [20]
    B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, and K. Han, Adv. Mater. 29, 1703758 (2017). doi: 10.1002/adma.201703758
    [21]
    I. Vasilescu, S. A. V. Eremia, M. Kusko, A. Radoi, E. Vasile, and G. L. Radu, Biosens. Bioelectron. 15, 30337 (2016).
    [22]
    S. Mansouri Majd, F. Ghasemi, A. Salimi, and T. K. Sham, ACS Appl. Electron. Mater. 2, 635 (2020). doi: 10.1021/acsaelm.9b00632
    [23]
    Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, Adv. Mater. 27, 5235 (2015). doi: 10.1002/adma.201501888
    [24]
    J. Shi, J. Lyu, F. Tian, and M. Yang, Biosens. Bioelectron. 93, 182 (2017).
    [25]
    D. Prasai, A. R. Klots, A. K. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Nano Lett. 15, 4374 (2015). doi: 10.1021/acs.nanolett.5b00514
    [26]
    W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Nanotechnology 27, 505204 (2016). doi: 10.1088/0957-4484/27/50/505204
    [27]
    R. Wu, X. Guo, J. Luo, and X. Miao, J. Lumin. 227, 117602 (2020). doi: 10.1016/j.jlumin.2020.117602
    [28]
    R. Wu, X. Guo, J. Luo, X. Miao, and J. Zhang, J. Phys. Chem. C 124, 25038 (2020). doi: 10.1021/acs.jpcc.0c06242
    [29]
    R. Wu, X. Wang, J. Luo, X. Liu, B. Li, S. Wang, L. Y. Cheng, and X. Miao, J. Phys. Chem. C 126, 1558 (2022).
    [30]
    R. Das, R. Bandyopadhyay, and P. Pramanik, Mater. Today Chem. 8, 96 (2018). doi: 10.1016/j.mtchem.2018.03.003
    [31]
    A. S. Rasal, S. Yadav, A. Yadav, A. A. Kashale, S. T. Manjunatha, A. Altaee, and J. Y. Chang, ACS Appl. Nano Mater. 4, 6515 (2021). doi: 10.1021/acsanm.1c01372
    [32]
    H. Gao, Q. Xu, J. Wang, C. Ning, Y. Liu, Y. Xie, and R. Lu, J. Phys. Chem. Lett. 13, 258 (2022). doi: 10.1021/acs.jpclett.1c03834
    [33]
    K. Wei, L. Zhang, S. L. Jiang, and Q. Zhang, Chin. J. Chem. Phys. 32, 643 (2019).
    [34]
    R. Wu, R. Chen, H. Zhou, Y. Qin, G. Zhang, C. Qin, Y. Gao, Y. Gao, L. Xiao, and S. Jia, Appl. Phys. Lett. 112, 053101 (2018). doi: 10.1063/1.5005157
    [35]
    X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, Nanoscale 6, 300 (2014). doi: 10.1039/C3NR04319C
    [36]
    C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, J. Photochem. Photobiol. C 13, 1 (2012). doi: 10.1016/j.jphotochemrev.2011.10.002
    [37]
    Q. Fang, Y. Dong, Y. Chen, C. H. Lu, Y. Chi, H. H. Yang, and T. Yu, Carbon 118, 319 (2017). doi: 10.1016/j.carbon.2017.03.061
    [38]
    W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, Carbon 109, 264 (2016). doi: 10.1016/j.carbon.2016.08.016
    [39]
    L. Zhang, J. Liu, H. Jiang, H. Gu, and S. Liu, Chin. Opt. Lett. 20, 100002 (2022). doi: 10.3788/COL202220.100002
    [40]
    R. Wu, J. Luo, X. Guo, X. Wang, Z. Ma, B. Li, L. Y. Cheng, and X. Miao, Chem. Phys. Lett. 781, 138960 (2021). doi: 10.1016/j.cplett.2021.138960
    [41]
    W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, Small 9, 3031 (2013). doi: 10.1002/smll.201202855
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (462) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return