Citation: | Ruixiang Wu, Xin Liu, Xiaoshuai Wang, Jingjing Luo, Bin Li, Shengzhi Wang, Xiangyang Miao. Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208129 |
[1] |
R. Xu, B. Huang, T. Wang, Y. Yuan, L. Zhang, C. Lu, Y. Cui, and J. Zhang, Superlattices Microstruct. 111, 665 (2017). doi: 10.1016/j.spmi.2017.07.017
|
[2] |
F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, Science 373, 8541 (2021). doi: 10.1126/science.aaz8541
|
[3] |
N. Nekić, J. Sancho-Parramon, I. Bogdanović-Radović, J. Grenzer, R. Hübner, S. Bernstorff, M. Ivanda, and M. Buljan, Nanophotonics 6, 1055 (2017). doi: 10.1515/nanoph-2016-0133
|
[4] |
S. Armaković and S. J. Armaković, J. Phys. Chem. Solids 98, 156 (2016). doi: 10.1016/j.jpcs.2016.07.006
|
[5] |
Y. Wu, C. Ma, Y. Chen, B. Mortazavi, Z. Lu, X. Zhang, K. Xu, H. Zhang, W. Liu, T. Rabczuk, H. Zhu, Z. Fang, and R. Zhang, Mater. Today Phys. 12, 100164 (2020). doi: 10.1016/j.mtphys.2019.100164
|
[6] |
M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, ACS Photonics 2, 288 (2015). doi: 10.3390/photonics2010288
|
[7] |
D. Ke, L. Z. Sui, D. L. Liu, J. Q. Cui, Y. F. Zhang, Q. Y. Li, S. Y. Li, Y. F. Jiang, A. M. Chen, J. L. Song, and M. X. Jin, Chin. J. Chem. Phys. 31, 277 (2018).
|
[8] |
B. V. Senkovskiy, M. Pfeiffer, S. K. Alavi, A. Bliesener, J. Zhu, S. Michel, A. V. Fedorov, R. German, D. Hertel, D. Haberer, L. Petaccia, F. R. Fischer, K. Meerholz, P. H. M. van Loosdrecht, K. Lindfors, and A. Gruneis, Nano Lett. 17, 4029 (2017). doi: 10.1021/acs.nanolett.7b00147
|
[9] |
B. Ullrich, H. Xi, and J. S. Wang, Appl. Phys. Lett. 108, 083110 (2016).
|
[10] |
I. Y. Goryacheva, A. V. Sapelkin, and G. B. Sukhorukov, Trends Anal. Chem. 90, 27 (2017). doi: 10.1016/j.trac.2017.02.012
|
[11] |
M. J. Molaei, Sol. Energy 196, 549 (2020). doi: 10.1016/j.solener.2019.12.036
|
[12] |
V. A. Öberg, X. Zhang, M. B. Johansson, and E. M. J. Johansson, ChemNanoMat 4, 1223 (2018). doi: 10.1002/cnma.201800263
|
[13] |
Y. Yang, D. Li, C. Li, Y. Liu, and K. Jiang, J. Hazard. Mater. 341, 93 (2018). doi: 10.1016/j.jhazmat.2017.07.052
|
[14] |
L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, J. Phys. Chem. Lett. 8, 3371 (2017). doi: 10.1021/acs.jpclett.7b00885
|
[15] |
C. Y. Han, H. S. Kim, and H. Yang, Materials 13, 897 (2020). doi: 10.3390/ma13040897
|
[16] |
H. Wu, Z. Kang, Z. Zhang, Z. Zhang, H. Si, Q. Liao, S. Zhang, J. Wu, X. Zhang, and Y. Zhang, Adv. Funct. Mater. 28, 1802015 (2018). doi: 10.1002/adfm.201802015
|
[17] |
F. I. Alzakia and S. C. Tan, Adv. Sci. 8, 2003864 (2021). doi: 10.1002/advs.202003864
|
[18] |
Y. Huang, H. Zang, J. S. Chen, E. A. Sutter, P. W. Sutter, C. Y. Nam, and M. Cotlet, Appl. Phys. Lett. 108, 123502 (2016). doi: 10.1063/1.4944781
|
[19] |
T. Bai, B. Yang, J. Chen, D. Zheng, Z. Tang, X. Wang, Y. Zhao, R. Lu, and K. Han, Adv. Mater. 33, 2007215 (2021). doi: 10.1002/adma.202007215
|
[20] |
B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, and K. Han, Adv. Mater. 29, 1703758 (2017). doi: 10.1002/adma.201703758
|
[21] |
I. Vasilescu, S. A. V. Eremia, M. Kusko, A. Radoi, E. Vasile, and G. L. Radu, Biosens. Bioelectron. 15, 30337 (2016).
|
[22] |
S. Mansouri Majd, F. Ghasemi, A. Salimi, and T. K. Sham, ACS Appl. Electron. Mater. 2, 635 (2020). doi: 10.1021/acsaelm.9b00632
|
[23] |
Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, Adv. Mater. 27, 5235 (2015). doi: 10.1002/adma.201501888
|
[24] |
J. Shi, J. Lyu, F. Tian, and M. Yang, Biosens. Bioelectron. 93, 182 (2017).
|
[25] |
D. Prasai, A. R. Klots, A. K. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Nano Lett. 15, 4374 (2015). doi: 10.1021/acs.nanolett.5b00514
|
[26] |
W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Nanotechnology 27, 505204 (2016). doi: 10.1088/0957-4484/27/50/505204
|
[27] |
R. Wu, X. Guo, J. Luo, and X. Miao, J. Lumin. 227, 117602 (2020). doi: 10.1016/j.jlumin.2020.117602
|
[28] |
R. Wu, X. Guo, J. Luo, X. Miao, and J. Zhang, J. Phys. Chem. C 124, 25038 (2020). doi: 10.1021/acs.jpcc.0c06242
|
[29] |
R. Wu, X. Wang, J. Luo, X. Liu, B. Li, S. Wang, L. Y. Cheng, and X. Miao, J. Phys. Chem. C 126, 1558 (2022).
|
[30] |
R. Das, R. Bandyopadhyay, and P. Pramanik, Mater. Today Chem. 8, 96 (2018). doi: 10.1016/j.mtchem.2018.03.003
|
[31] |
A. S. Rasal, S. Yadav, A. Yadav, A. A. Kashale, S. T. Manjunatha, A. Altaee, and J. Y. Chang, ACS Appl. Nano Mater. 4, 6515 (2021). doi: 10.1021/acsanm.1c01372
|
[32] |
H. Gao, Q. Xu, J. Wang, C. Ning, Y. Liu, Y. Xie, and R. Lu, J. Phys. Chem. Lett. 13, 258 (2022). doi: 10.1021/acs.jpclett.1c03834
|
[33] |
K. Wei, L. Zhang, S. L. Jiang, and Q. Zhang, Chin. J. Chem. Phys. 32, 643 (2019).
|
[34] |
R. Wu, R. Chen, H. Zhou, Y. Qin, G. Zhang, C. Qin, Y. Gao, Y. Gao, L. Xiao, and S. Jia, Appl. Phys. Lett. 112, 053101 (2018). doi: 10.1063/1.5005157
|
[35] |
X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, Nanoscale 6, 300 (2014). doi: 10.1039/C3NR04319C
|
[36] |
C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, J. Photochem. Photobiol. C 13, 1 (2012). doi: 10.1016/j.jphotochemrev.2011.10.002
|
[37] |
Q. Fang, Y. Dong, Y. Chen, C. H. Lu, Y. Chi, H. H. Yang, and T. Yu, Carbon 118, 319 (2017). doi: 10.1016/j.carbon.2017.03.061
|
[38] |
W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, Carbon 109, 264 (2016). doi: 10.1016/j.carbon.2016.08.016
|
[39] |
L. Zhang, J. Liu, H. Jiang, H. Gu, and S. Liu, Chin. Opt. Lett. 20, 100002 (2022). doi: 10.3788/COL202220.100002
|
[40] |
R. Wu, J. Luo, X. Guo, X. Wang, Z. Ma, B. Li, L. Y. Cheng, and X. Miao, Chem. Phys. Lett. 781, 138960 (2021). doi: 10.1016/j.cplett.2021.138960
|
[41] |
W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, Small 9, 3031 (2013). doi: 10.1002/smll.201202855
|