Turn off MathJax
Article Contents
Yao-Yuan Huo, Jun Jiang. Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208128
Citation: Yao-Yuan Huo, Jun Jiang. Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208128

Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets

doi: 10.1063/1674-0068/cjcp2208128
More Information
  • Corresponding author: E-mail: jiangj1@ustc.edu.cn
  • Received Date: 2022-08-25
  • Accepted Date: 2023-04-22
  • Available Online: 2023-04-24
  • Machine learning (ML) approaches like neural networks have been widely used in chemical researches for fast estimating chemical properties. Generating ML models of good precision requires datasets of high quality, which can be difficult to obtain. In this work, we trained graph neural network (GNN) models from different datasets and verified transferring of the models to other datasets. Our result shows that cross-dataset evaluation can give less accurate but still correlative prediction results on different datasets. Errors are mainly due to systematic errors. The value range of prediction result is highly related to the range of training set. The precisions of different bonds show different distributions. C–H bond constantly gets the highest precision in the tested bonds.

     

  • loading
  • [1]
    J. Wu and X. Xu, J. Chem. Phys. 127, 214105 (2007). doi: 10.1063/1.2800018
    [2]
    J. Wu, Y. Zhou, and X. Xu, Int. J. Quantum Chem. 115, 1021 (2015). doi: 10.1002/qua.24919
    [3]
    S. Urata, A. Takada, T. Uchimaru, A. K. Chandra, and A. Sekiya, J. Fluorine Chem. 116, 163 (2002). doi: 10.1016/S0022-1139(02)00128-8
    [4]
    X. Qu, D. A. R. S. Latino, and J. Aires-de-Sousa, J. Cheminformatics 5, 34 (2013). doi: 10.1186/1758-2946-5-34
    [5]
    B. Maryasin, P. Marquetand, and N. Maulide, Angew. Chem, Int. Ed. 57, 6978 (2018). doi: 10.1002/anie.201803562
    [6]
    M. Szwarc, Chem. Rev. 47, 75 (1950). doi: 10.1021/cr60146a002
    [7]
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [8]
    F. Scarselli, M. Gori, and A. C. Tsoi, IEEE Trans. Neural Networks 20, 61 (2009). doi: 10.1109/TNN.2008.2005605
    [9]
    P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, Relational Inductive Biases, Deep Learning, and Graph Networks. arXiv preprint (2018), arXiv: 1806.01261.
    [10]
    P. C. St. John, Y. Guan, Y. Kim, S. Kim, and R. S. Paton, Nat. Commun. 11, 2328 (2020). doi: 10.1038/s41467-020-16201-z
    [11]
    M. Wen, S. M. Blau, E. W. C. Spotte-Smith, S. Dwaraknath, and K. A. Persson, Chem. Sci. 12, 1858 (2021). doi: 10.1039/D0SC05251E
    [12]
    Y. Kim, Y. Jeong, J. Kim, E. K. Lee, W. J. Kim, and I. S. Choi, Chem. Asian J. 17, e202200269 (2022). doi: 10.1002/asia.202200269
    [13]
    C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green, R. Barzilay, and K. F. Jensen, Chem. Sci. 10, 370 (2019). doi: 10.1039/C8SC04228D
    [14]
    E. Mansimov, O. Mahmood, S. Kang, and K. Cho, Sci. Rep. 9, 20381 (2019). doi: 10.1038/s41598-019-56773-5
    [15]
    D. Chen, K. Gao, D. D. Nguyen, X. Chen, Y. Jiang, G. W. Wei, and F. Pan, Nat. Commun. 12, 3521 (2021). doi: 10.1038/s41467-021-23720-w
    [16]
    [17]
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    [18]
    T. Lu and F. Chen, J. Mol. Model. 19, 5387 (2013). doi: 10.1007/s00894-013-2034-2
    [19]
    P. St. John, Y. Guan, Y. Kim, and S. Kim, Bde-Db: A Collection of 290 664 Homolytic Bond Dissociation Enthalpies for Small Organic Molecules, Figshare (2019).
    [20]
    X. Gonze, P. Ghosez, and R. Godby, Phys. Rev. Lett. 74, 4035 (1995). doi: 10.1103/PhysRevLett.74.4035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (153) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return