Turn off MathJax
Article Contents
Shiyan Cao, Sulei Hu, Wei-Xue Li. First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207111
Citation: Shiyan Cao, Sulei Hu, Wei-Xue Li. First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207111

First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)

doi: 10.1063/1674-0068/cjcp2207111
More Information
  • Revealing the fundamental mechanisms governing reactant-induced disintegration of supported metal nanoparticles and their dependences on the metal component and reactant species is vital for improving the stability of supported metal nanocatalysts and single-atom catalysts. Here we use first-principles-based disintegration thermodynamics to study the CO- and OH-induced disintegration of Ag, Cu, Au, Ni, Pt, Rh, Ru, and Ir nanoparticles into metal-reactant complexes (M(CO)n, M(OH)n, n=1 and 2) on the pristine and bridge oxygen vacancy site of TiO2(110). It was found that CO has a stronger interaction with these considered transition metals compared to OH, resulting in lower formation energy and a larger promotion effect on the disintegration of nanoparticles (NPs). The corresponding reactant adsorption energy shows a linear dependence on the metal cohesive energy, and metals with higher cohesive energies tend to have higher atomic stability due to their stronger binding with reactant and support. Further disintegration free energy calculations of NPs into metal-reactant complexes indicate only CO-induced disintegration of Ni, Rh, Ru, and Ir nanoparticles is thermodynamically feasible. These results provide a deeper understanding of reactant-induced disintegration of metal nanoparticles into thermodynamically stable metal single-atom catalysts.

     

  • loading
  • [1]
    H. Goksu, N. Zengin, H. Burhan, K. Cellat, and F. Sen, Sci. Rep. 10, 8043 (2020). doi: 10.1038/s41598-020-64988-0
    [2]
    A. Beniya and S. Higashi, Nat. Catal. 2, 590 (2019). doi: 10.1038/s41929-019-0282-y
    [3]
    J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, and T. F. Jaramillo, Nat. Energy 1, 16053 (2016). doi: 10.1038/nenergy.2016.53
    [4]
    J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans, and M. Perez, Angew. Chem. Int. Ed. 46, 1329 (2007). doi: 10.1002/anie.200603931
    [5]
    S. Hu and W. X. Li, Science 374, 1360 (2021). doi: 10.1126/science.abi9828
    [6]
    W. Yuan, D. Zhang, Y. Ou, K. Fang, B. Zhu, H. Yang, T. W. Hansen, J. B. Wagner, Z. Zhang, Y. Gao, and Y. Wang, Angew. Chem. Int. Ed. Engl. 57, 16827 (2018). doi: 10.1002/anie.201811933
    [7]
    G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha and U. Diebold, Nat. Mater. 12, 724 (2013). doi: 10.1038/nmat3667
    [8]
    L. Luo, M. H. Engelhard, Y. Shao, and C. Wang, ACS Catal. 7, 7658 (2017). doi: 10.1021/acscatal.7b02861
    [9]
    M. A. van Spronsen, J. W. M. Frenken and I. M. N. Groot, Nat. Commun. 8, 429 (2017). doi: 10.1038/s41467-017-00643-z
    [10]
    S. Cao, X. Chai, S. Hu, nd W. X. Li, J. Phys. Chem. C 126, 8056 (2022). doi: 10.1021/acs.jpcc.2c00612
    [11]
    S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, and Y. Li, Nat. Nanotechnol. 13, 856 (2018). doi: 10.1038/s41565-018-0197-9
    [12]
    E. D. Goodman, A. C. Johnston-Peck, E. M. Dietze, C. J. Wrasman, A. S. Hoffman, F. Abild-Pedersen, S. R. Bare, P. N. Plessow, and M. Cargnello, Nat. Catal. 2, 748 (2019). doi: 10.1038/s41929-019-0328-1
    [13]
    B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem. 3, 634 (2011). doi: 10.1038/nchem.1095
    [14]
    L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, and Yong Wang, Science 358, 1419 (2017). doi: 10.1126/science.aao2109
    [15]
    J. H. Fu, J. H. Dong, R. Si, K. J. Sun, J. Y. Zhang, M. R. Li, N. N. Yu, B. S. Zhang, M. G. Humphrey, Q. Fu, and J. Huang, ACS Catal. 11, 1952 (2021). doi: 10.1021/acscatal.0c05599
    [16]
    J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, C. Franchini, and G. S. Parkinson, Science 371, 375 (2021). doi: 10.1126/science.abe5757
    [17]
    X. He, Q. He, Y. Deng, M. Peng, H. Chen, Y. Zhang, S. Yao, M. Zhang, D. Xiao, D. Ma, B. Ge, and H. Ji, Nat. Commun. 10, 3663 (2019). doi: 10.1038/s41467-019-11619-6
    [18]
    H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, and T. Zhang, Nat. Commun. 10, 4585 (2019). doi: 10.1038/s41467-019-12510-0
    [19]
    L. Lin, J. Liu, X. Liu, Z. Gao, N. Rui, S. Yao, F. Zhang, M. Wang, C. Liu, L. Han, F. Yang, S. Zhang, X. Wen, S. D. Senanayake, Y. Wu, X. Li, J. A. Rodriguez, and D. Ma, Nat. Commun. 12, 6978 (2021). doi: 10.1038/s41467-021-27116-8
    [20]
    Y. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, J. Li, and P. Sautet, Nat. Commun. 10, 4488 (2019). doi: 10.1038/s41467-019-12461-6
    [21]
    Y. Q. Su, Y. Wang, J. X. Liu, I. A. W. Filot, K. Alexopoulos, L. Zhang, V. Muravev, B. Zijlstra, D. G. Vlachos, and E. J. M. Hensen, ACS Catal. 9, 3289 (2019). doi: 10.1021/acscatal.9b00252
    [22]
    R. Ouyang, J. X. Liu, and W. X. Li, J. Am. Chem. Soc. 135, 1760 (2013). doi: 10.1021/ja3087054
    [23]
    J. C. Liu, Y. G. Wang and J. Li, J. Am. Chem. Soc. 139, 6190 (2017). doi: 10.1021/jacs.7b01602
    [24]
    F. Wang, J. Ma, S. Xin, Q. Wang, J. Xu, C. Zhang, H. He, and X. C. Zeng, Nat. Commun. 11, 529 (2020). doi: 10.1038/s41467-019-13937-1
    [25]
    M. Moliner, J. E. Gabay, C. E. Kliewer, R. T. Carr, J. Guzman, G. L. Casty, P. Serna, and A. Corma, J. Am. Chem. Soc. 138, 15743 (2016). doi: 10.1021/jacs.6b10169
    [26]
    R. Li, X. Xu, B. Zhu, X. Y. Li, Y. Ning, R. Mu, P. Du, M. Li, H. Wang, J. Liang, Y. Chen, Y. Gao, B. Yang, Q. Fu, and X. Bao, Nat. Commun. 12, 1406 (2021). doi: 10.1038/s41467-021-21552-2
    [27]
    K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren, A. F. Lee, Y. Su, X. Pan, J. Zhang, Z. Chen, J. Yang, X. Liu, T. Zhou, W. Xi, J. Luo, C. Zeng, H. Matsumoto, W. Liu, Q. Jiang, K. Wilson, A. Wang, B. Qiao, W. Li, and T. Zhang, Nat. Commun. 11, 1263 (2020). doi: 10.1038/s41467-020-14984-9
    [28]
    R. Lang, W. Xi, J. C. Liu, Y. T. Cui, T. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, J. Lin, S. Miao, X. Liu, A. Wang, X. Wang, J. Luo, B. Qiao, J. Li, and T. Zhang, Nat. Commun. 10, 234 (2019). doi: 10.1038/s41467-018-08136-3
    [29]
    L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, and P. Christopher, Nat. Mater. 18, 746 (2019). doi: 10.1038/s41563-019-0349-9
    [30]
    H. B. Zhang, G. G. Liu, L. Shi, and J. H. Ye, Adv. Energy Mater. 8, 1701343 (2018). doi: 10.1002/aenm.201701343
    [31]
    Y. Yao, S. Hu, W. Chen, Z. Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. X. Li, P. Strasser, Y. Wu and Y. Li, Nat. Catal. 2, 304 (2019). doi: 10.1038/s41929-019-0246-2
    [32]
    K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y. R. Lu, T. S. Chan, F. M. F. de Groot, and Y. Tan, Nat. Commun. 12, 1687 (2021). doi: 10.1038/s41467-021-21956-0
    [33]
    X. Li, H. Rong, J. Zhang, D. Wang, and Y. Li, Nano Res. 13, 1842 (2020). doi: 10.1007/s12274-020-2755-3
    [34]
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993). doi: 10.1103/PhysRevB.47.558
    [35]
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [36]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [37]
    J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987). doi: 10.1021/ja00246a021
    [38]
    C. Kittel, Introduction to Solid State Physics, 8th Edn., Hoboken, NJ: John Wiley & Sons, (2005).
    [39]
    S. Hu and W. X. Li, ChemNanoMat 4, 510 (2018). doi: 10.1002/cnma.201800052
    [40]
    N. Humphrey, S. Bac, and S. Mallikarjun Sharada, J. Chem. Phys. 154, 234709 (2021). doi: 10.1063/5.0054991
    [41]
    J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, and Y. Li, Adv. Mater. 30, 1705369 (2018). doi: 10.1002/adma.201705369
    [42]
    D. Pillay, Y. Wang, and G. S. Hwang, Korean J. Chem. Engineer. 21, 537 (2004). doi: 10.1007/BF02705445
    [43]
    A. Hjorth Larsen, J. Jorgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys. Condens. Matter. 29, 273002 (2017). doi: 10.1088/1361-648X/aa680e
    [44]
    K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003). doi: 10.1103/PhysRevB.68.045407
    [45]
    B. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh, L. W. Wang, G. A. Somorjai, and M. Salmeron, Science 351, 475 (2016). doi: 10.1126/science.aad8868
    [46]
    A. Berkó and F. Solymosi, J. Catal. 183, 91 (1999). doi: 10.1006/jcat.1998.2368
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (565) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return