Turn off MathJax
Article Contents
Congcong Qiao, Gang Fu. Understanding the Reactivity of Single Atom Alloys towards the Alkyl C–H Bond Activation: A theoretical Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207110
Citation: Congcong Qiao, Gang Fu. Understanding the Reactivity of Single Atom Alloys towards the Alkyl CH Bond Activation: A theoretical Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207110

Understanding the Reactivity of Single Atom Alloys towards the Alkyl CH Bond Activation: A theoretical Study

doi: 10.1063/1674-0068/cjcp2207110
More Information
  • Corresponding author: E-mail: gfu@xmu.edu.cn
  • Received Date: 2022-07-12
  • Accepted Date: 2022-07-14
  • Available Online: 2022-07-26
  • Single atom alloys (SAAs), composed of active metal dopants atomically dispersed on the Cu, Ag, or Au host metals, have recently become a ‘rising star’ in single atom catalysis research. SAAs usually display unique catalytic behavior, mainly due to the anomalous electronic structure of isolated active sites, distinguishing from that of the parent metals. As the consequence, there is lack of robust yet reliable descriptor of catalytic properties of SAAs. In this work, we present a systematically theoretical study on the first C–H bond activation of methane, propane and ethylbenzene over 15 SAAs comprising of Rh, Ir, Ni, Pd, and Pt doping Cu(111), Ag(111), and Au(111) surfaces. Our DFT calculations demonstrate that not only the d-band centers but also the H atom adsorption energies could not correlate well with the activation barriers of alkyl C–H bond, while enhanced performance is achieved when using the reaction energy as a descriptor. We find that there existed orbital interaction similarity between C atom adsorption on top site and the transition states of C–H activation because both of them involve not only σ donation with dz2 orbital but also the π back-donation from dxy/dyz orbital(s). As a consequence, the C adsorption energies and C–H bond activation energies are very strongly correlated (R2>0.9), not only for methane but also for propane and ethylbenzene.


  • loading
  • [1]
    Y. Wang, P. Hu, J. Yang, Y.-A. Zhu, and D. Chen, Chem. Soc. Rev. 50, 4299 (2021). doi: 10.1039/D0CS01262A
    J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, Chem. Rev. 114, 10613 (2014). doi: 10.1021/cr5002436
    J. A. Labinger and J. E. Bercaw, Nature 417, 507 (2002). doi: 10.1038/417507a
    A. E. Shilov and G. B. Shul'pin, Chem. Rev. 97, 2879 (1997). doi: 10.1021/cr9411886
    E. Mcfarland, Science 338, 340 (2012). doi: 10.1126/science.1226840
    S. Chen, C. Pei, G. Sun, Z. J. Zhao, and J. Gong, Acc. Mater. Res. 1, 30 (2020). doi: 10.1021/accountsmr.0c00012
    F. Jiang, L. Zeng, S. Li, G. Liu, S. Wang, and J. Gong, ACS Catal. 5, 438 (2015). doi: 10.1021/cs501279v
    L. Deng, T. Arakawa, T. Ohkubo, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, and T. Tanaka, Ind. Eng. Chem. Res. 56, 7160 (2017).
    H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002). doi: 10.1006/jcat.2002.3579
    D. Balcells, E. Clot, and O. Eisenstein, Chem. Rev. 110, 749 (2010). doi: 10.1021/cr900315k
    J. T. Grant, J. M. Venegas, W. P. Mcdermott, and I. Hermans, Chem. Rev. 118, 2769 (2018). doi: 10.1021/acs.chemrev.7b00236
    J. Weaver, C. Hakanoglu, A. Antony, and A. Asthagiri, Chem. Soc. Rev. 43, 7536 (2014). doi: 10.1039/c3cs60420a
    G. Caeiro, R. H. Carvalho, X. Wang, M. A. N. D. A. Lemos, F. Lemos, M. Guisnet, and F. Ramôa Ribeiro, J. Mol. Catal. A Chem. 255, 131 (2006). doi: 10.1016/j.molcata.2006.03.068
    G. Fu, R. Yuan, H. Wan, and X. Xu, J. Energy Chem. 25, 1045 (2016). doi: 10.1016/j.jechem.2016.10.006
    G. Fu, X. Xu, X. Lu, and H. Wan, J. Am. Chem. Soc. 127, 3989 (2005). doi: 10.1021/ja0441099
    P. Wang, G. Fu, and H. Wan, ACS Catal. 7, 5544 (2017). doi: 10.1021/acscatal.7b01498
    A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, and J. K. Nørskov, Nat. Mater. 16, 225 (2017). doi: 10.1038/nmat4760
    T. Saelee, S. Namuangruk, N. Kungwan, and A. Junkaew, J. Phys. Chem. C 122, 14678 (2018). doi: 10.1021/acs.jpcc.8b03939
    M. L. Yang, Y. A. Zhu, C. Fan, Z. J. Sui, D. Chen, and X. G. Zhou, Phys. Chem. Chem. Phys. 13, 3257 (2011). doi: 10.1039/c0cp00341g
    T. Hannagan Ryan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel, Y. Wang, A. Michaelides, P. Deshlahra, P. Christopher, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Science 372, 1444 (2021). doi: 10.1126/science.abg8389
    G. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, and J. Gong, Nat. Commun. 9, 4454 (2018). doi: 10.1038/s41467-018-06967-8
    M. D. Marcinkowski, A. D. Jewell, M. Stamatakis, M. B. Boucher, E. A. Lewis, C. J. Murphy, G. Kyriakou, and E. C. H. Sykes, Nat. Mater. 12, 523 (2013). doi: 10.1038/nmat3620
    M. D. Marcinkowski, M. T. Darby, J. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Nat. Chem. 10, 325 (2018). doi: 10.1038/nchem.2915
    Q. Fu and Y. Luo, ACS Catal. 3, 1245 (2013). doi: 10.1021/cs400267x
    R. Réocreux and M. Stamatakis, Acc. Chem. Res. 55, 87 (2022). doi: 10.1021/acs.accounts.1c00611
    M. T. Greiner, T. E. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, and R. Schlögl, Nat. Chem. 10, 1008 (2018). doi: 10.1038/s41557-018-0125-5
    T. D. Spivey and A. Holewinski, J. Am. Chem. Soc. 143, 11897 (2021). doi: 10.1021/jacs.1c04234
    A. Kokalj, N. Bonini, S. De Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006). doi: 10.1021/ja060114w
    H. Thirumalai and J. R. Kitchin, Top. Catal. 61, 462 (2018). doi: 10.1007/s11244-018-0899-0
    Z. K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao, and S. V. Levchenko, Nature Commun. 12, 1833 (2021). doi: 10.1038/s41467-021-22048-9
    R. A. Van Santen, M. Neurock, and S. G. Shetty, Chem. Rev. 110, 2005 (2010). doi: 10.1021/cr9001808
    V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000). doi: 10.1006/jcat.1999.2724
    F. Mehmood, R. B. Rankin, J. Greeley, and L. A. Curtiss, Phys. Chem. Chem. Phys. 14, 8644 (2012). doi: 10.1039/c2cp00052k
    M. T. Darby, R. Réocreux, E. C. H. Sykes, A. Michaelides, and M. Stamatakis, ACS Catal. 8, 5038 (2018). doi: 10.1021/acscatal.8b00881
    M. L. Yang, Y. A. Zhu, X. G. Zhou, Z. J. Sui, and D. Chen, ACS Catal. 2, 1247 (2012). doi: 10.1021/cs300031d
    G. Kresse, J. Non. Cryst. Solids, 192, 222 (1995).
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    D. J. Chadi, Phys. Rev. B 16, 1746 (1977). doi: 10.1103/PhysRevB.16.1746
    W. An, X. C. Zeng, and C. H. Turner, J. Chem. Phys. 131, 174702 (2009). doi: 10.1063/1.3254383
    M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87, 2724 (1987). doi: 10.1063/1.453060
    M. B. Lee, Q. Y. Yang, S. L. Tang, and S. T. Ceyer, J. Chem. Phys. 85, 1693 (1986). doi: 10.1063/1.451211
    Y. R. Luo. Comprehensive Handbook of Chemical Bond Energies, 1st Edn., Boca Raton: CRC Press, (2007).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (447) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint