Turn off MathJax
Article Contents
Xue Yin, Dong-bao Yao, Hao-jun Liang. Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207107
Citation: Xue Yin, Dong-bao Yao, Hao-jun Liang. Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207107

Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells

doi: 10.1063/1674-0068/cjcp2207107
More Information
  • Author Bio:

    Prof. Liang passed away in February, 2022. This work is our tribute to our dear supervisor

  • Corresponding author: E-mail: dbyao@ustc.edu.cnhjliang@ustc.edu.cn
  • Received Date: 2022-07-06
  • Accepted Date: 2022-09-01
  • Rev Recd Date: 2022-08-22
  • Available Online: 2022-09-03
  • The hairpin element (HpE) near the start codon in the 5′ UTR was developed to tune the mRNA translation in mammalian cells. The parameters of HpEs including thermodynamic stability, GC content, and distance between HpEs and the 5′ cap were investigated. The parameters of HpEs including thermodynamic stability, GC content, and distance between HpEs and the 5′ cap were investigated, which influenced the mRNA expression level. In addition, the start codon and the upstream open reading frame sequestered within the structures of HpEs also reduced the translation initiation. In summary, this study shows that the simple engineering HpE structure can be efficiently adopted for gene expression regulation. The predictable controllability of this simple cloning strategy can potentially achieve precise gene expression regulation in different mammalian cell types.

     

  • loading
  • [1]
    S. Grabow, A. J. Kueh, F. Ke, H. K. Vanyai, B. N. Sheikh, M. A. Dengler, W. Chiang, S. Eccles, I. M. Smyth, L. K. Jones, F. J. de Sauvage, M. Scott, L. Whitehead, A. K. Voss, and A. Strasser, Cell Rep. 24, 3285 (2018). doi: 10.1016/j.celrep.2018.08.048
    [2]
    F. Wei, S. Zhong, Z. Ma, H. Kong, A. Medvec, R. Ahmed, J. F. Gordon, M. Krogsgaard, and L. R. James, Proc. Natl. Acad. Sci. USA 110, E2480 (2013). doi: 10.1073/pnas.1305394110
    [3]
    H. Bao, Y. Ding, F. Yang, J. Zhang, J. Xie, C. Zhao, K. Du, Y. Zeng, K. Zhao, Z. Li, and Z. Yang, BMC Genom. 23, 346 (2022). doi: 10.1186/s12864-022-08549-x
    [4]
    Z. T. Ding, Z. Zhang, D. Luo, J. Y. Zhou, J. Zhong, J. Yang, L. Xiao, D. Shu, and H. Tan, Int. J. Mol. Sci. 16, 10301 (2015). doi: 10.3390/ijms160510301
    [5]
    M. B. Kopniczky, S. J. Moore, and P. S. Freemont, IEEE Trans. Biomed. Circuits Syst. 9, 485 (2015). doi: 10.1109/TBCAS.2015.2451707
    [6]
    S. Ausländer, D. Ausländer, and M. Fussenegger, Angew Chem. Int. Ed. 56, 6396 (2017). doi: 10.1002/anie.201609229
    [7]
    M. P. McNerney, D. M. Watstein, and M. P. Styczynski, Metab. Eng. 31, 123 (2015). doi: 10.1016/j.ymben.2015.06.011
    [8]
    T. Li, B. Liu, M. H. Spalding, D. P. Weeks, and B. Yang, Nat. Biotechnol. 30, 390 (2012). doi: 10.1038/nbt.2199
    [9]
    H. Ledford, Nature 531, 156 (2016). doi: 10.1038/531156a
    [10]
    Z. Lu, S. Yang, X. Yuan, Y. Shi, L. Ouyang, S. Jiang, L. Yi, and G. Zhang, Nucleic Acids Res. 47, e40 (2019). doi: 10.1093/nar/gkz072
    [11]
    J. P. Ferreira, R. W. Peacock, I. E. Lawhorn, and C. L. Wang, Synth. Syst. Biotechnol. 5, 131 (2011). doi: 10.1007/s11693-011-9089-0
    [12]
    J. Blazeck and H. S. Alper, J. Biotechnol. 8, 46 (2013). doi: 10.1002/biot.201200120
    [13]
    A. J. Brown, B. Sweeney, D. O. Mainwaring, and D. C. James, Biotechnol. Bioeng. 111, 1638 (2014). doi: 10.1002/bit.25227
    [14]
    M. He, X. Zhou, Z. Li, X. Yin, W. Han, J. Zhou, X. Sun, X. Liu, D. Yao, and H. Liang, J. Am. Chem. Soc. 144, 12690 (2022). doi: 10.1021/jacs.2c02271
    [15]
    H. Nakanishi, H. Saito, and K. Itaka, ACS Synthetic Biology. 11, 1077 (2022). doi: 10.1021/acssynbio.1c00567
    [16]
    L. A. Gilbert, M. H. Larson, L. Morsut, Z. Liu, G. A. Brar, S. E. Torres, N. Stern-Ginossar, O. Brandman, E. H. Whitehead, J. A. Doudna, W. A. Lim, J. S. Weissman, and L. S. Qi, Cell 154, 442 (2013). doi: 10.1016/j.cell.2013.06.044
    [17]
    S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh, C. Barcena, P. D. Hsu, N. Habib, J. S. Gootenberg, H. Nishimasu, O. Nureki, and F. Zhang, Nature 517, 583 (2015). doi: 10.1038/nature14136
    [18]
    J. G. Zalatan, M. E. Lee, R. Almeida, L. A. Gilbert, E. H. Whitehead, M. La Russa, J. C. Tsai, J. S. Weissman, J. E. Dueber, L. S. Qi, and W. A. Lim, Cell 160, 339 (2015). doi: 10.1016/j.cell.2014.11.052
    [19]
    Y. S. Michaels, M. B. Barnkob, H. Barbosa, T. A. Baeumler, M. K. Thompson, V. Andre, H. Colin-York, M. Fritzsche, U. Gileadi, H. M. Sheppard, D. J. H. F. Knapp, T. A. Milne, V. Cerundolo, and T. A. Fulga, Nat. Commun. 10, 818 (2019). doi: 10.1038/s41467-019-08777-y
    [20]
    S. Matsuura, H. Ono, S. Kawasaki, Y. Kuang, Y. Fujita, and H. Saito, Nat. Commun. 9, 4847 (2018). doi: 10.1038/s41467-018-07181-2
    [21]
    Y. Yokobayashi, Curr. Opin. Chem. Biol. 52, 72 (2019). doi: 10.1016/j.cbpa.2019.05.018
    [22]
    S. D. Petersen, J. Zhang, J. S. Lee, T. Jakociunas, L. M. Grav, H. F. Kildegaard, J. D. Keasling, and M. K. Jensen, Nucleic Acids Res. 46, e127 (2018). doi: 10.1093/nar/gky734
    [23]
    J. P. Ferreira, K. W. Overton, and C. L. Wang, Proc. Natl. Acad. Sci. USA 110, 11284 (2013). doi: 10.1073/pnas.1305590110
    [24]
    L. Jia, Y. Mao, Q. Ji, D. Dersh, J. W. Yewdell, and S. B. Qian, Nat. Struct. Mol. Biol. 27, 814 (2020). doi: 10.1038/s41594-020-0465-x
    [25]
    K. Leppek, R. Das, and M. Barna, Nat. Rev. Mol. Cell Biol. 19, 158 (2018). doi: 10.1038/nrm.2017.103
    [26]
    K. Endo, J. A. Stapleton, K. Hayashi, H. Saito, and T. Inoue, Nucleic Acids Res. 41, e135 (2013). doi: 10.1093/nar/gkt347
    [27]
    M. Kozak, Proc. Natl. Acad. Sci. USA 83, 2850 (1986). doi: 10.1073/pnas.83.9.2850
    [28]
    P. Eisenhut, A. Mebrahtu, M. Moradi Barzadd, N. Thalén, G. Klanert, M. Weinguny, A. Sandegren, C. Su, D. Hatton, N. Borth, and J. Rockberg, Nucleic Acids Res. 48, e119 (2020). doi: 10.1093/nar/gkaa847
    [29]
    J. R. Babendure, J. L. Babendure, J. H. Ding, and R. Y. Tsien, RNA 12, 851 (2006). doi: 10.1261/rna.2309906
    [30]
    E. Lamping, M. Niimi, and R. D. Cannon, Microb. Cell Fact. 12, 74 (2013). doi: 10.1186/1475-2859-12-74
    [31]
    T. Weenink, J. van der Hilst, R. M. McKiernan, and T. Ellis, Synth. Biol. 3, ysy019 (2018). doi: 10.1093/synbio/ysy019
    [32]
    R. J. Jackson, C. U. T. Hellen, and T. V. Pestova, Nat. Rev. Mol. Cell Biol. 11, 113 (2010). doi: 10.1038/nrm2838
    [33]
    G. Hinnebusch Alan, Microbiol. Mol. Biol. Rev. 75, 434 (2011). doi: 10.1128/MMBR.00008-11
    [34]
    T. Zhang, A. Wu, Y. Yue, and Y. Zhao, Int. J. Mol. Sci. 21, 6238 (2020). doi: 10.3390/ijms21176238
    [35]
    E. Calvo Sarah, J. Pagliarini David, and K. Mootha Vamsi, Proc. Natl. Acad. Sci. USA 106, 7507 (2009). doi: 10.1073/pnas.0810916106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (488) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return