Turn off MathJax
Article Contents
Lufeng Yuan, Wangyang Li, Guangyuan Xu, Mengqi Wan, Zhen Zhang. Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206100
Citation: Lufeng Yuan, Wangyang Li, Guangyuan Xu, Mengqi Wan, Zhen Zhang. Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206100

Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water

doi: 10.1063/1674-0068/cjcp2206100
More Information
  • Corresponding author: E-mail: zzchem@ustc.edu.cn
  • Received Date: 2022-06-17
  • Accepted Date: 2022-07-27
  • Available Online: 2022-08-02
  • The behavior of hydrogen production on ZnO electrode during the electrolytic reduction of water was investigated by cyclic voltammetry (CV) and cathode polarization experiments combined with in situ Raman and photoluminescence spectroscopy. CV experiments indicate that hydrogen species prefers to diffuse into the ZnO bulk at negative potentials and occupies oxygen vacancies and interstitial sites . Meanwhile, the H2O reduction is self-enhanced during the electroreduction process, as evidenced by the trace crossing of the CV curves and the chronoamperometric experiment. The influence of the H species on the ZnO electrode during the electrocatalytic processes was characterized by the in situ Raman and photoluminescence spectroscopies. These results help us to understand the hydrogen-related catalytic or electrocatalytic processes on ZnO surfaces.

     

  • loading
  • [1]
    Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and Morkoç, J. Appl. Phys. 98, 11 (2005). doi: 10.1063/1.1992666
    [2]
    C. Klingshirn, Phys. Status. Solidi (b) 244, 3027 (2007). doi: 10.1002/pssb.200743072
    [3]
    N. Li, F. Jiao, X. L. Pan, Y. Ding, J. Y. Feng, and X. H. Bao, ACS Catal. 9, 960 (2018).
    [4]
    Y. Liu, Y. Li, and H. Zeng, J. Nanomater. 2013, 9 (2013).
    [5]
    Y. F. Gao and M. Nagai, Langmuir 22, 3936 (2006). doi: 10.1021/la053042f
    [6]
    J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, and S. Wu, Cryst. Growth. Des. 9, 3532 (2009). doi: 10.1021/cg900269a
    [7]
    Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008). doi: 10.1021/nl0803702
    [8]
    D. C. Look, Mater. Sci. Eng. B 80, 383 (2001). doi: 10.1016/S0921-5107(00)00604-8
    [9]
    A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009). doi: 10.1088/0034-4885/72/12/126501
    [10]
    E. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B. 66, 165205 (2002). doi: 10.1103/PhysRevB.66.165205
    [11]
    D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004).
    [12]
    J. Luo, J. X. Liu, and W. X. Li, J. Phys. Chem. C 126, 9059 (2022). doi: 10.1021/acs.jpcc.2c02607
    [13]
    H. Shi, H. Yuan, Z. Li, W. Y. Wang, Z. Y. Li, and X. Shao, J. Phys. Chem. C 123, 13283 (2019). doi: 10.1021/acs.jpcc.9b01447
    [14]
    V. M. Sofianos, J. Lee, D. S. Silvester, P. K. Samanta, M. Paskevicius, N. J. English, and C. E. Buckley, J. Energy Chem. 56, 162 (2021). doi: 10.1016/j.jechem.2020.07.051
    [15]
    D. Thomas and J. Lander, J. Chem. Phys. 25, 1136 (1956). doi: 10.1063/1.1743165
    [16]
    C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000). doi: 10.1103/PhysRevLett.85.1012
    [17]
    A. Janotti and C. G. Van de Walle, Nat. Mater. 6, 44 (2007). doi: 10.1038/nmat1795
    [18]
    J. Čížek, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, and W. Skorupa, J. Appl. Phys. 103, 053508 (2008). doi: 10.1063/1.2844479
    [19]
    H. Takenaka, D. J. Singh, Phys. Rev. B 75, 241102 (2007). doi: 10.1103/PhysRevB.75.241102
    [20]
    E. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. B 79, 165210 (2009). doi: 10.1103/PhysRevB.79.165210
    [21]
    C. F. Windisch Jr., G. J. Exarhos, C. Yao, and L. Q. Wang, J. Appl. Phys. 101, 123711 (2007). doi: 10.1063/1.2748719
    [22]
    M. Wang, G. Y. Yu, W. X. Ji, L. Li, W. P. Ding, and L. M. Peng, Chem. Phys. Lett. 627, 7 (2015). doi: 10.1016/j.cplett.2015.03.024
    [23]
    G. A. Shi, M. Saboktakin, M. Stavola, and S. Pearton, Appl. Phys. Lett. 85, 5601 (2004). doi: 10.1063/1.1832736
    [24]
    F. Lukáč, J. Čížek, M. Vlček, I. Procházka, M. Vlach, W. Anwand, G. Brauer, F. Traeger, D. Rogalla, and H. W. Becker, Mater. Sci. Forum. 733, 228 (2013). doi: 10.4028/www.scientific.net/MSF.733.228
    [25]
    B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005). doi: 10.1021/ja0504690
    [26]
    X. X. Zou and Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015). doi: 10.1039/C4CS00448E
    [27]
    C. Chianella, R. Palombari, and A. Petricca, Electrochim. Acta 52, 369 (2006). doi: 10.1016/j.electacta.2006.05.015
    [28]
    M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. Lett. 96, 205504 (2006). doi: 10.1103/PhysRevLett.96.205504
    [29]
    J. Bang and K. J. Chang, Appl. Phys. Lett. 92, 132109 (2008). doi: 10.1063/1.2906379
    [30]
    X. W. Wu, W. Y. Li, S. Z. Sheng, L. Zhu, L. F. Yuan, J. W. Liu, S. Y. Jin, and Z. Zhang, Electrochem. Commun. 129, 107085 (2021). doi: 10.1016/j.elecom.2021.107085
    [31]
    C. P. Andrieux, A. Merz, and J. M. Saveant, J. Am. Chem. Soc. 107, 6097 (1985). doi: 10.1021/ja00307a045
    [32]
    A. Houmam, E. M. Hamed, and I. W. Still, J. Am. Chem. Soc. 125, 7258 (2003). doi: 10.1021/ja028542z
    [33]
    J. Q. Zhang, M. Z. An, and L. M. Chang, Electrochim. Acta 54, 2883 (2009). doi: 10.1016/j.electacta.2008.11.015
    [34]
    A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edn., New York: John Wiley & Sons Inc., (2001).
    [35]
    B. Sieber, H. Liu, G. Piret, J. Laureyns, P. Roussel, B. Gelloz, S. Szunerits, and R. Boukherroub, J. Phys. Chem. C 113, 13643 (2009). doi: 10.1021/jp903504w
    [36]
    P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, J. Appl. Phys. 105, 083713 (2009). doi: 10.1063/1.3108543
    [37]
    J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and P. K. Chu, ACS Appl. Mater. Interfaces 2, 1780 (2010). doi: 10.1021/am100298p
    [38]
    Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys. 123, 134701 (2005). doi: 10.1063/1.2009731
    [39]
    R. Heinhold, A. Neiman, J. Kennedy, A. Markwitz, R. Reeves, and M. Allen, Phys. Rev. B 95, 054120 (2017). doi: 10.1103/PhysRevB.95.054120
    [40]
    X. Chen, Q. Xie, and J. Li, Ceram. Int. 46, 2309 (2020). doi: 10.1016/j.ceramint.2019.09.220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (453) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return