Turn off MathJax
Article Contents
Xuxu Ye, Bingyu Liu, Da Zhou, Yan Xia Chen. Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205095
Citation: Xuxu Ye, Bingyu Liu, Da Zhou, Yan Xia Chen. Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205095

Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation

doi: 10.1063/1674-0068/cjcp2205095
More Information
  • Corresponding author: E-mail: yachen@ustc.edu.cn
  • Received Date: 2022-05-31
  • Accepted Date: 2022-07-16
  • Available Online: 2022-07-22
  • Au nanowires in 4H crystalline phase (4H Au NWs) are synthesized by colloid solution methods. The crystalline phase and surface structure as well as its performance toward electrochemical oxidation of CO before and after removing adsorbed oleylamine molecules (OAs) introduced from its synthesis are evaluated by high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), underpotential deposition of Pb (Pb-upd) and cyclic voltammetry. Different methods, i.e. acetic acid cleaning, electrochemical oxidation cleaning, and diethylamine replacement, have been tried to remove the adsorbed OAs. For all methods, upon the removal of the adsorbed OAs, the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles, accompanying with a transition from the 4H phase to the face-centered cubic phase. On the other hand, the Pb-upd results show that the sample surfaces have almost the same facet composition before and after removal of the adsorbed OAs. After electrochemical cleaning with continuous potential scans up to 1.3 V, CO electro-oxidation activity of the 4H Au sample is significantly improved. The CO electro-oxidation activity is compared with results on the three basel Au single crystalline surfaces reported in the literature, possible origins for its enhancement are discussed.

     

  • loading
  • [1]
    A. R. Tao, S. Habas, and P. Yang, Small 4, 310 (2008). doi: 10.1002/smll.200701295
    [2]
    Y. Xia, X. Xia, and H. C. Peng, J. Am. Chem. Soc. 137, 7947 (2015). doi: 10.1021/jacs.5b04641
    [3]
    Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, Angew. Chem. Int. Ed. Engl. 56, 60 (2017). doi: 10.1002/anie.201604731
    [4]
    M. Park, C. Liang, T. H. Lee, D. A. Agyeman, J. Yang, V. W. h. Lau, S. I. Choi, H. W. Jang, K. Cho, and Y. M. Kang, Adv. Energy Mater. 10, 1903225 (2020). doi: 10.1002/aenm.201903225
    [5]
    C. Wang, H. Yang, Y. Zhang, and Q. Wang, Angew. Chem. Int. Ed. 58, 6099 (2019). doi: 10.1002/anie.201902446
    [6]
    Z. Kong, Y. Maswadeh, J. A. Vargas, S. Shan, Z. P. Wu, H. Kareem, A. C. Leff, D. T. Tran, F. Chang, S. Yan, S. Nam, X. Zhao, J. M. Lee, J. Luo, S. Shastri, G. Yu, V. Petkov, and C. J. Zhong, J. Am. Chem. Soc. 142, 1287 (2019). doi: 10.1021/jacs.9b10239
    [7]
    W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, and H. Zhu, J. Am. Chem. Soc. 139, 8846 (2017). doi: 10.1021/jacs.7b01784
    [8]
    Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. A. Lu, Z. Xie, and L. Zheng, Nat. Commun. 8, 15131 (2017). doi: 10.1038/ncomms15131
    [9]
    J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, S. Sun, Joule 3, 124 (2019). doi: 10.1016/j.joule.2018.09.016
    [10]
    Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K. P. Ong, Y. A. Akimov, L. Wu, B. Li, J. Wu, Y. Huang, Q. Liu, C. E. Png, C. L. Gan, P. Yang, and H. Zhang, Nat. Commun. 6, 7684 (2015). doi: 10.1038/ncomms8684
    [11]
    Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, B. Li, Y. Zong, L. Gu, J. Wang, X. Wang, and H. Zhang, J. Am. Chem. Soc. 142, 12760 (2020). doi: 10.1021/jacs.0c04981
    [12]
    Q. Lu, A. L. Wang, Y. Gong, W. Hao, H. Cheng, J. Chen, B. Li, N. Yang, W. Niu, J. Wang, Y. Yu, X. Zhang, Y. Chen, Z. Fan, X. J. Wu, J. Chen, J. Luo, S. Li, L. Gu, and H. Zhang, Nat. Chem. 10, 456 (2018). doi: 10.1038/s41557-018-0012-0
    [13]
    Z. Fan, Y. Chen, Y. Zhu, J. Wang, B. Li, Y. Zong, Y. Han, and H. Zhang, Chem. Sci. 8, 795 (2017). doi: 10.1039/C6SC02953A
    [14]
    Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, and H. Zhang, Adv. Mater. 29, (2017). doi: 10.1002/adma.201701331
    [15]
    Z. Fan, Z. Luo, X. Huang, B. Li, Y. Chen, J. Wang, Y. Hu, and H. Zhang, J. Am. Chem. Soc. 138, 1414 (2016). doi: 10.1021/jacs.5b12715
    [16]
    Z. Fan, Z. Luo, Y. Chen, J. Wang, B. Li, Y. Zong, and H. Zhang, Small 12, 3908 (2016). doi: 10.1002/smll.201601787
    [17]
    S. Han, C. Cai, G. J. Xia, C. Sun, X. Shi, W. Zhou, J. Li, Y. G. Wang, and M. Gu, Inorg. Chem. 59, 14415 (2020). doi: 10.1021/acs.inorgchem.0c02209
    [18]
    P. Li, Y. Han, X. Zhou, Z. Fan, S. Xu, K. Cao, F. Meng, L. Gao, J. Song, H. Zhang, and Y. Lu, Matter 2, 658 (2020). doi: 10.1016/j.matt.2019.10.003
    [19]
    Q. Li, W. Niu, X. Liu, Y. Chen, X. Wu, X. Wen, Z. Wang, H. Zhang, and Z. Quan, J. Am. Chem. Soc. 140, 15783 (2018). doi: 10.1021/jacs.8b08647
    [20]
    Q. Wang, Z. L. Zhao, C. Cai, H. Li, and M. Gu, J. Mater. Chem. A 7, 23812 (2019). doi: 10.1039/C9TA01306G
    [21]
    P. Strasser, M. Gliech, S. Kuehl, and T. Moeller, Chem. Soc. Rev. 47, 715 (2018). doi: 10.1039/C7CS00759K
    [22]
    M. Oezaslan, M. Heggen, and P. Strasser, J. Am. Chem. Soc. 134, 514 (2012). doi: 10.1021/ja2088162
    [23]
    D. Wang, Y. Yu, J. Zhu, S. Liu, D. A. Muller, and H. D. Abruna, Nano Lett. 15, 1343 (2015). doi: 10.1021/nl504597j
    [24]
    D. Wang, Y. Yu, H. L. Xin, R. Hovden, P. Ercius, J. A. Mundy, H. Chen, J. H. Richard, D. A. Muller, F. J. DiSalvo, and H. D. Abruna, Nano Lett. 12, 5230 (2012). doi: 10.1021/nl302404g
    [25]
    J. Wei, R. Amirbeigiarab, Y. X. Chen, S. Sakong, A. Gross, and O. M. Magnussen, Angew. Chem. Int. Ed. Engl. 59, 6182 (2020). doi: 10.1002/anie.201913412
    [26]
    F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. Dunin-Borkowski, and P. Strasser, Nano Lett. 19, 6876 (2019). doi: 10.1021/acs.nanolett.9b02116
    [27]
    V. Beermann, M. E. Holtz, E. Padgett, J. F. de Araujo, D. A. Muller, and P. Strasser, Energy Environ. Sci. 12, 2476 (2019). doi: 10.1039/C9EE01185D
    [28]
    G. Niu, M. Zhou, X. Yang, J. Park, N. Lu, J. Wang, M. J. Kim, L. Wang, and Y. Xia, Nano Lett. 16, 3850 (2016). doi: 10.1021/acs.nanolett.6b01340
    [29]
    N. Zhang, L. Bu, S. Guo, J. Guo, and X. Huang, Nano Lett. 16, 5037 (2016). doi: 10.1021/acs.nanolett.6b01825
    [30]
    K. Li, X. Li, H. Huang, L. Luo, X. Li, X. Yan, C. Ma, R. Si, J. Yang, and J. Zeng, J. Am. Chem. Soc. 140, 16159 (2018). doi: 10.1021/jacs.8b08836
    [31]
    M. Asahi, S.-i. Yamazaki, N. Taguchi, and T. Ioroi, J. Electrochem. Soc. 166, F498 (2019). doi: 10.1149/2.0641908jes
    [32]
    Y. H. Chung, D. Y. Chung, N. Jung, and Y. E. Sung, J. Phys. Chem. Lett. 4, 1304 (2013). doi: 10.1021/jz400574f
    [33]
    K. Miyabayashi, H. Nishihara, and M. Miyake, Langmuir 30, 2936 (2014). doi: 10.1021/la402412k
    [34]
    Z. Niu and Y. Li, Chem. Mater. 26, 72 (2013). doi: 10.1021/cm4022479
    [35]
    L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, and S. Dong, J. Am. Chem. Soc. 140, 1142 (2018). doi: 10.1021/jacs.7b12353
    [36]
    Z. Fan and H. Zhang, Acc. Chem. Res. 49, 2841 (2016). doi: 10.1021/acs.accounts.6b00527
    [37]
    J. Hernández, J. Solla-Gullón, E. Herrero, A. Aldaz, and J. M. Feliu, J. Phys. Chem. C 111, 14078 (2007). doi: 10.1021/jp0749726
    [38]
    J. Hernández, J. Solla-Gullón, and E. Herrero, J. Electroanal. Chem. 574, 185 (2004). doi: 10.1016/j.jelechem.2003.10.039
    [39]
    K. Engelsmann, W. J. Lorenz, and E. Schmidt, J. Electroanal. Chemi. Interfacial Electrochem. 114, 1 (1980). doi: 10.1016/S0022-0728(80)80431-1
    [40]
    S. Han, G. J. Xia, C. Cai, Q. Wang, Y. G. Wang, M. Gu, and J. Li, Nat. Commun. 11, 552 (2022). doi: 10.1038/s41467-019-14212-z
    [41]
    P. Rodriguez, N. Garcia-Araez, and M. T. M. Koper, Phys. Chem. Chem. Phys. 12, 9373 (2010). doi: 10.1039/b926365a
    [42]
    P. Rodriguez, N. Garcia-Araez, A. Koverga, S. Frank, and M. T. M. Koper, Langmuir 26, 12425 (2010). doi: 10.1021/la1014048
    [43]
    L. Lu, B. Lou, S. Zou, H. Kobayashi, J. Liu, L. Xiao, and J. Fan, ACS Catal. 8, 8484 (2018). doi: 10.1021/acscatal.8b01627
    [44]
    Q. Fan, K. Liu, Z. Liu, H. Liu, L. Zhang, P. Zhong, and C. Gao, Part. Part. Syst. Charact. 34, 159 (2017). doi: 10.1002/ppsc.201700075
    [45]
    I. Chakraborty, D. Carvalho, S. N. Shirodkar, S. Lahiri, S. Bhattacharyya, R. Banerjee, U. Waghmare, and P. Ayyub, J. Phys.: Condens. Matter. 23, 325401 (2011). doi: 10.1088/0953-8984/23/32/325401
    [46]
    Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009). doi: 10.1002/anie.200802248
    [47]
    C. Jeyabharathi, M. Zander, and F. Scholz, Electroanal. Chem. 819, 159 (2018). doi: 10.1016/j.jelechem.2017.10.011
    [48]
    D. Chen, Q. Tao, L. W. Liao, S. X. Liu, Y. X. Chen, and S. Ye, Electrocatalysis 2, 207 (2011). doi: 10.1007/s12678-011-0054-1
    [49]
    H. Yang, Y. Tang, and S. Zou, Electrochem. Commun. 38, 134 (2014). doi: 10.1016/j.elecom.2013.11.019
    [50]
    R. J. Nichols, O. M. Magnussen, J. Hotlos, T. Twomey, R. J. Behm, and D. M. Kolb, J. Electroanal. Chem. Interfacial Electrochem. 290, 21 (1990). doi: 10.1016/0022-0728(90)87417-I
    [51]
    M. A. Schneeweiss and D. M. Kolb, Solid State Ionics. 171, 94 (1997). doi: 10.1016/S0167-2738(96)00587-5
    [52]
    D. Dickertmann, J. W. Schultze, and K. J. Vetter, J. Electroanal. Chem. Interfacial Electrochem. 55, 429 (1974). doi: 10.1016/S0022-0728(74)80437-7
    [53]
    B. B. Blizanac, M. Arenz, P. N. Ross, and N. M. Marković, J. Am. Chem. Soc. 126, 10130 (2004). doi: 10.1021/ja049038s
    [54]
    A. A. Koverga, S. Frank, and M. T. M. Koper, Electrochim. Acta 101, 244 (2013). doi: 10.1016/j.electacta.2012.12.061
    [55]
    P. Rodriguez, J. M. Feliu, and M. T. M. Koper, Electrochem. Commun. 11, 1105 (2009). doi: 10.1016/j.elecom.2009.03.018
    [56]
    P. Rodríguez, A. A. Koverga, and M. T. M. Koper, Angew. Chem. Int. Ed. 49, 1241 (2010). doi: 10.1002/anie.200905387
  • CJCP2205095SP.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (459) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return