Turn off MathJax
Article Contents
Xiaojun Wang, Ni Lu, Yuanyi Fu, Chang Lu, Meili Guan, Kunhua Wang, Hao Yu. Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205093
Citation: Xiaojun Wang, Ni Lu, Yuanyi Fu, Chang Lu, Meili Guan, Kunhua Wang, Hao Yu. Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205093

Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural

doi: 10.1063/1674-0068/cjcp2205093
More Information
  • The 5-hydroxymethylfurfural (5-HMF) acts as an important chemical intermediate to bridge the biomass resources and industrial applications, which shows the potential for green development. However, the performance of biomass materials conversion to 5-HMF is still limited in the green solvent. Herein, an effective approach is reported to prepare the highly efficient solid acid catalysts, NbOx /WOy -ZrO2, to improve fructose conversion. It is found that the introduction of Nb results in the generation of the niobium oxides, which improves acid sites and tunes the ratios of Brønsted acid and Lewis acid on the surface of the WOy -ZrO2 support. With the acidity improvement and increasing acid sites of the NbOx /WOy -ZrO2, the highest fructose conversion is 99% in water. Meanwhile, the 5-HMF yield and the selectivity are also as high as 50.1% and 50.7% under the reaction temperature of 180 °C for a short reaction time of 30 min. The proposed NbOx /WOy -ZrO2 catalyst strategy will not only open a new way for designing the solid acid catalysts to achieve high performance of the 5-HMF in the water, but also promote the green production of biomass and sustainable development in the future.

     

  • loading
  • [1]
    P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012). doi: 10.1039/C1CS15147A
    [2]
    L. D. Schmidt and P. J. Dauenhauer, Nature 447, 914 (2007). doi: 10.1038/447914a
    [3]
    S. P. Teong, G. S. Yi, and Y. G. Zhang, Green Chem. 16, 2015 (2014). doi: 10.1039/c3gc42018c
    [4]
    M. Jakob and J. Hilaire, Nature 517, 150 (2015). doi: 10.1038/517150a
    [5]
    R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, and J. Dumesic, Green Chem. 14, 1413 (2012). doi: 10.1039/c2gc35039d
    [6]
    Z. Z. Yang, W. Qi, R. L. Huang, J. Fang, R. X. Su, and Z. M. He, Chem. Eng. J. 296, 209 (2016). doi: 10.1016/j.cej.2016.03.084
    [7]
    T. D. Matson, K. Barta, A. V. Iretskii, and P. C. Ford, J. Am. Chem. Soc. 133, 14090 (2011). doi: 10.1021/ja205436c
    [8]
    Z. Y. Han, Y. Y. Wu, H. Yu, and S. X. Zhou, J. Magnes. Alloy. 10, 1617 (2022). doi: 10.1016/j.jma.2021.03.002
    [9]
    X. X. Liu, J. F. Xiao, H. Ding, W. Z. Zhong, Q. Xu, S. P. Su, and D. L. Yin, Chem. Eng. J. 283, 1315 (2016). doi: 10.1016/j.cej.2015.08.022
    [10]
    X. W. Han, C. Q. Li, X. H. Liu, Q. N. Xia, and Y. Q. Wang, Green Chem. 19, 996 (2017). doi: 10.1039/C6GC03304K
    [11]
    G. S. Svenningsen, R. Kumar, C. E. Wyman, and P. Christopher, Acs Catal. 8, 5591 (2018). doi: 10.1021/acscatal.8b01197
    [12]
    B. Wozniak, S. Tin, and J. G. de Vries, Chem. Sci. 10, 6024 (2019). doi: 10.1039/C9SC01309A
    [13]
    A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007). doi: 10.1021/cr050989d
    [14]
    M. A. Mellmer, C. Sanpitakseree, B. Demir, K. W. Ma, W. A. Elliott, P. Bai, R. L. Johnson, T. W. Walker, B. H. Shanks, R. M. Rioux, M. Neurock, and J. A. Dumesic, Nat. Commun. 10, 1132 (2019). doi: 10.1038/s41467-019-09090-4
    [15]
    Q. Sun, S. Wang, B. Aguila, X. J. Meng, S. Q. Ma, and F. S. Xiao, Nat. Commun. 9, 3236 (2018). doi: 10.1038/s41467-018-05534-5
    [16]
    Y. S. Qu, C. P. Huang, J. Zhang, and B. H. Chen, Bioresour. Technol. 106, 170 (2012). doi: 10.1016/j.biortech.2011.11.069
    [17]
    A. Chinnappan, A. H. Jadhav, H. Kim, and W. J. Chung, Chem. Eng. J. 237, 95 (2014). doi: 10.1016/j.cej.2013.09.106
    [18]
    L. F. Zhu, J. H. Dai, M. Y. Liu, D. Y. Tang, S. Q. Liu, and C. W. Hu, Chemsuschem 9, 2174 (2016). doi: 10.1002/cssc.201600503
    [19]
    I. K. M. Yu, D. C. W. Tsang, S. S. Chen, L. Wang, A. J. Hunt, J. Sherwood, K. D. Vigier, F. Jerome, Y. S. Ok, and C. S. Poon, Bioresource Technol. 245, 456 (2017). doi: 10.1016/j.biortech.2017.08.170
    [20]
    Y. L. Zhang, Y. Chen, J. M. Pan, M. Liu, P. Jin, and Y. S. Yan, Chem. Eng. J. 313, 1593 (2017). doi: 10.1016/j.cej.2016.11.033
    [21]
    Q. B. Wu, Y. N. Yan, Q. Zhang, J. H. Lu, Z. J. Yang, Y. H. Zhang, and Y. Tang, Chemsuschem 6, 820 (2013). doi: 10.1002/cssc.201300004
    [22]
    Y. Shen, Y. F. Xu, J. K. Sun, B. Wang, F. Xu, and R. C. Sun, Catal. Commun. 50, 17 (2014). doi: 10.1016/j.catcom.2014.02.019
    [23]
    A. Ranoux, K. Djanashvili, I. W. C. E. Arends, and U. Hanefeld, Acs Catal. 3, 760 (2013). doi: 10.1021/cs400099a
    [24]
    V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N. S. Marinkovic, A. I. Frenkel, S. I. Sandler, and D. G. Vlachos, J. Am. Chem. Soc. 135, 3997 (2013). doi: 10.1021/ja3122763
    [25]
    L. T. Mika, E. Csefalvay, and A. Nemeth, Chem. Rev. 118, 505 (2018). doi: 10.1021/acs.chemrev.7b00395
    [26]
    W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, and C. J. Kiely, Nat. Chem. 1, 722 (2009). doi: 10.1038/nchem.433
    [27]
    R. Kourieh, S. Bennici, M. Marzo, A. Gervasini, and A. Auroux, Catal. Commun. 19, 119 (2012). doi: 10.1016/j.catcom.2011.12.030
    [28]
    T. Yamamoto, A. Teramachi, A. Orita, A. Kurimoto, T. Motoi, and T. Tanaka, J. Phys. Chem. C 120, 19705 (2016). doi: 10.1021/acs.jpcc.6b05388
    [29]
    Y. M. Zhou, L. J. Zhang, and S. Y. Tao, Acs Appl. Nano Mater. 2, 5125 (2019). doi: 10.1021/acsanm.9b01008
    [30]
    N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, and M. S. Wong, J. Am. Chem. Soc. 132, 13462 (2010). doi: 10.1021/ja105519y
    [31]
    Y. Ji, S. Bai, D. Xu, D. Qian, Z. Wu, Y. Song, R. Pace, M. Crocker, K. Wilson, A. Lee, D. Harris, and D. Scapens, Appl. Catal. B: Environ. 264, 118499 (2020). doi: 10.1016/j.apcatb.2019.118499
    [32]
    M. L. Hernández, J. A. Montoya, I. Hernández, M. Viniegra, M. E. Llanos, V. Garibay, and P. D. Angel, Micropor. Mesopor. Mat. 89, 186 (2006). doi: 10.1016/j.micromeso.2005.10.005
    [33]
    J. R. Sohn, S. H. Lee, and J. S. Lim, Catal. Today 116, 143 (2006). doi: 10.1016/j.cattod.2006.01.023
    [34]
    Y. H. Wang, W. G. Gao, H. Wang, Y. E. Zheng, W. Na, and K. Z. Li, RSC Adv. 7, 8709 (2017). doi: 10.1039/C6RA28305E
    [35]
    Y. Wang, Y. Liu, L. Yang, R. Ruan, P. Wen, and Y. Wan, Synth. React. Inorg. Met. Nano-Metal Chem. 46, 177 (2015).
    [36]
    F. Digregorio, J. Catal. 225, 45 (2004). doi: 10.1016/j.jcat.2004.03.023
    [37]
    N. Z. Yang, R. T. Guo, W. G. Pan, Q. L. Chen, Q. S. Wang, C. Z. Lu, and S. X. Wang, Appl. Surf. Sci. 378, 513 (2016). doi: 10.1016/j.apsusc.2016.03.211
    [38]
    J. He, J. W. Chen, L. B. Ren, Y. Wang, C. Teng, M. Hong, J. Zhao, and B. W. Jiang, Acs Appl. Mater. Inter. 6, 2718 (2014). doi: 10.1021/am405202d
    [39]
    W. Chen, I. A. W. Filot, R. Pestman, and E. J. M. Hensen, ACS Catal. 7, 8061 (2017). doi: 10.1021/acscatal.7b02758
    [40]
    H. D. Xu, Y. Wang, Y. Cao, Z. T. Fang, T. Lin, M. C. Gong, and Y. Q. Chen, Chem. Eng. J. 240, 62 (2014). doi: 10.1016/j.cej.2013.11.053
    [41]
    B. Guo, L. Ye, G. F. Tang, L. Zhang, B. Yue, S. C. E. Tsang, and H. Y. He, Chin. J. Chem. 35, 1529 (2017). doi: 10.1002/cjoc.201700084
    [42]
    T. Ji, Z. Li, C. Liu, X. H. Lu, L. C. Li, and J. H. Zhu, Appl. Catal. B: Environ. 243, 741 (2019). doi: 10.1016/j.apcatb.2018.11.013
    [43]
    B. S. Solanki and C. V. Rode, Green Chem. 21, 6390 (2019). doi: 10.1039/C9GC03091C
    [44]
    F. Jiang, S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y. Xu, and X. Liu, Acs Catal. 10, 11493 (2020). doi: 10.1021/acscatal.0c03324
    [45]
    W. Li, Y. Liu, M. Mu, F. Ding, Z. Liu, X. Guo, and C. Song, Appl. Catal. B: Environ. 254, 531 (2019). doi: 10.1016/j.apcatb.2019.05.028
    [46]
    K. H. Wang, L. Wang, Y. Y. Liu, Y. H. Song, Y. C. Yin, J. S. Yao, J. N. Yang, J. J. Wang, L. Z. Feng, Q. Zhang, Q. Zhang, and H. B. Yao, Adv. Opt. Mater. 9, (2020).
    [47]
    M. Sun, S. Wang, Y. Li, H. Xu, and Y. Chen, Appl. Surf. Sci. 402, 323 (2017). doi: 10.1016/j.apsusc.2016.12.241
    [48]
    J. He and Y. N. Fan, Acta Phys. -Chim. Sin. 27, 2416 (2011). doi: 10.3866/PKU.WHXB20110934
    [49]
    G. Qiu, X. C. Wang, C. P. Huang, Y. X. Li, and B. H. Chen, RSC Adv. 8, 32423 (2018). doi: 10.1039/C8RA05940C
    [50]
    X. H. Qi, H. X. Guo, and L. Y. Li, Ind. Eng. Chem. Res. 50, 7985 (2011). doi: 10.1021/ie200488k
    [51]
    I. Jiménez-Morales, J. Santamaría-González, A. Jiménez-López, and P. Maireles-Torres, Fuel 118, 265 (2014). doi: 10.1016/j.fuel.2013.10.079
    [52]
    Y. Zhang, J. Pan, Y. Shen, W. Shi, C. Liu, and L. Yu, ACS Sustain. Chem. Eng. 3, 871 (2015). doi: 10.1021/sc5008412
    [53]
    Y. N. Li, J. Q. Wang, L. N. He, Z. Z. Yang, A. H. Liu, B. Yu, and C. R. Luan, Green Chem. 14, 2752 (2012). doi: 10.1039/c2gc35845j
    [54]
    R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Chem. Rev. 113, 1499 (2013). doi: 10.1021/cr300182k
    [55]
    C. D. Jin, N. Xiang, X. Zhu, E. Shuang, K. C. Sheng, and X. M. Zhang, Appl. Catal. B: Environ. 285, 119799 (2021). doi: 10.1016/j.apcatb.2020.119799
    [56]
    H. Kimura, M. Nakahara, and N. Matubayasi, J. Phys. Chem. A 117, 2102 (2013). doi: 10.1021/jp312002h
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (385) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return