Turn off MathJax
Article Contents
Huimin Liu, Lianwei Wei, Hui Zheng, Kaibin Tang. co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2204072
Citation: Huimin Liu, Lianwei Wei, Hui Zheng, Kaibin Tang. co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2204072

co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst

doi: 10.1063/1674-0068/cjcp2204072
More Information
  • Corresponding author: E-mail: kbtang@ustc.edu.cn
  • Received Date: 2022-04-22
  • Accepted Date: 2022-06-02
  • Available Online: 2022-06-24
  • The high reaction barrier of the oxygen evolution reaction (OER) has always been the bottleneck of the water decomposition reaction, so low-cost, high-performance and stable catalysts are urgently needed currently. Herein, we designed an effective OER electrocatalyst BaCo0.6Fe0.2Ni0.2O3−δ (BCFN) by a co-doping strategy. The overpotential of BCFN at a current density of 10 mA/cm2 reaches 310 mV, and possesses a Tafel slope of 50.2 mV/dec. The catalytic capability of BCFN is much stronger than that of Fe-doped BaCo0.8Fe0.2O3−δ (BCF 360 mV), Ni-doped BaCo0.8Ni0.2O3−δ (375 mV), and benchmark IrO2 with excellent performance (329 mV). At the same time, BCFN is also a fairly stable alkaline OER catalyst. After 500-cycle scans, BCFN still shows high catalytic activity without significant decrease in catalytic performance. Electrochemical experiments show that BCFN has the fastest reaction kinetics and the lowest charge transfer resistance among the materials in our study. In addition, a large amount of highly oxidative oxygen O22−/O and hydroxyl groups OH on the surface of BCFN are conducive to the occurrence of OER, thereby increasing the reaction rate. This work provides a universal strategy to develop high-performance electrocatalysts for electrochemical energy conversion technology.

     

  • loading
  • [1]
    G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song, W. Zhou, and Z. Shao, Energy Fuels 34, 15169 (2020). doi: 10.1021/acs.energyfuels.0c01887
    [2]
    L. Ye and K. Xie, J. Energy Chem. 54, 736 (2021). doi: 10.1016/j.jechem.2020.06.050
    [3]
    W. Wang, M. Xu, X. Xu, W. Zhou, and Z. Shao, Angew. Chem. Int. Ed. 59, 136 (2020). doi: 10.1002/anie.201900292
    [4]
    Q. Lu, X. Zou, Y. Bu, K. Liao, W. Zhou, and Z. Shao, Small 18, e2105604 (2022). doi: 10.1002/smll.202105604
    [5]
    Y. Cheng, C. Xu, L. Jia, J. D. Gale, L. Zhang, C. Liu, P. K. Shen, and S. P. Jiang, Appl. Catal. B 163, 96 (2015). doi: 10.1016/j.apcatb.2014.07.049
    [6]
    M. Ledendecker, G. Clavel, M. Antonietti, and M. Shalom, Adv. Funct. Mater. 25, 393 (2015). doi: 10.1002/adfm.201402078
    [7]
    M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale 7, 8920 (2015). doi: 10.1039/C4NR07243J
    [8]
    S. Feng, L. Yang, Z. Zhang, Q. Li, and D. Xu, ACS Appl. Energy Mater. 3, 943 (2019).
    [9]
    X. Xu, C. Su, and Z. Shao, Energy Fuels 35, 13585 (2021). doi: 10.1021/acs.energyfuels.1c02111
    [10]
    Y. F. Sun, Y. Q. Zhang, J. Chen, J. H. Li, Y. T. Zhu, Y. M. Zeng, B. S. Amirkhiz, J. Li, B. Hua, and J. L. Luo, Nano Lett. 16, 5303 (2016). doi: 10.1021/acs.nanolett.6b02757
    [11]
    L. Han, S. Dong, and E. Wang, Adv. Mater. 28, 9266 (2016). doi: 10.1002/adma.201602270
    [12]
    D. A. Agyeman, Y. Zheng, T. H. Lee, M. Park, W. Tamakloe, G. H. Lee, H. W. Jang, K. Cho, and Y. M. Kang, ACS Catal. 11, 424 (2020). doi: 10.1021/acscatal.0c02608
    [13]
    D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, and H. Pan, Adv. Energy Mater. 10, 2002464 (2020). doi: 10.1002/aenm.202002464
    [14]
    Y. H. Wang, W. J. Jiang, W. Yao, Z. L. Liu, Z. Liu, Y. Yang, and L. Z. Gao, Rare Met. 40, 2327 (2021). doi: 10.1007/s12598-021-01728-x
    [15]
    P. N. Panahi, M. H. Rasoulifard, and S. Babaei, Rare Met. 39, 139 (2019).
    [16]
    L. Dai, X. B. Lu, G. H. Chu, C. H. He, W. C. Zhan, and G. J. Zhou, Rare Met. 40, 555 (2020).
    [17]
    Y. Matsumoto, S. Yamada, and T. Nishida, J. Electrochem. Soc. 127, 2360 (1980). doi: 10.1149/1.2129415
    [18]
    A. Grimaud, K. J. May, C. E. Carlton, Y. L. Lee, M. Risch, W. T. Hong, J. Zhou, and Y. Shao-Horn, Nat. Commun. 4, 2439 (2013). doi: 10.1038/ncomms3439
    [19]
    B. J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, and T. J. Schmidt, J. Am. Chem. Soc. 141, 5231 (2019). doi: 10.1021/jacs.8b12101
    [20]
    S. Gupta, W. Kellogg, H. Xu, X. Liu, J. Cho, and G. Wu, Chem. Asian J. 11, 10 (2016). doi: 10.1002/asia.201500640
    [21]
    X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, and Z. Shao, Adv. Sci. 3, 1500187 (2016). doi: 10.1002/advs.201500187
    [22]
    Q. Xu, S. Song, Y. Zhang, Y. Wang, J. Zhang, Y. Ruan, and M. Han, Electrochim. Acta 191, 577 (2016). doi: 10.1016/j.electacta.2016.01.109
    [23]
    K. Li, M. Yin, Z. Wang, X. Chen, T. Zhu, J. Wang, N. Dewangan, Y. Yu, Q. Zhong, and S. Kawi, ChemistrySelect 3, 12424 (2018). doi: 10.1002/slct.201802906
    [24]
    C. Jin, X. Cao, F. Lu, Z. Yang, and R. Yang, Int. J. Hydrog. Energy. 38, 10389 (2013). doi: 10.1016/j.ijhydene.2013.06.047
    [25]
    H. Jo, Y. Yang, A. Seong, D. Jeong, J. Kim, S. H. Joo, Y. J. Kim, L. Zhang, Z. Liu, J. Q. Wang, S. K. Kwak, and G. Kim, J. Mater. Chem. A 10, 2271 (2022). doi: 10.1039/D1TA08445C
    [26]
    F. Dong, M. Ni, Y. Chen, D. Chen, M. O. Tadé, and Z. Shao, J. Mater. Chem. A 2, 20520 (2014). doi: 10.1039/C4TA04372C
    [27]
    L. Tang, Y. Rao, L. Wei, H. Zheng, H. Liu, W. Zhang, and K. Tang, Chin. J. Chem. 39, 2692 (2021). doi: 10.1002/cjoc.202100215
    [28]
    C. Bernard, B. Durand, and M. Verelst, J. Mater. Sci. 39, 2821 (2004). doi: 10.1023/B:JMSC.0000021459.24971.91
    [29]
    L. Zhu, G. Lu, Y. Wang, Y. Guo, and Y. Guo, Chin. J. Catal. 31, 1006 (2010). doi: 10.1016/S1872-2067(10)60101-5
    [30]
    X. Liu, W. Y. Huang, Q. Zhou, X. R. Chen, K. Yang, D. Li, and D. D. Dionysiou, Rare Met. 40, 1086 (2020).
    [31]
    G. Pecchi, C. Campos, and O. Peña, Mater. Res. Bull. 44, 846 (2009). doi: 10.1016/j.materresbull.2008.09.009
    [32]
    M. A. Salguero Salas, J. M. De Paoli, O. E. Linarez Pérez, N. Bajales, and V. C. Fuertes, Microporous Mesoporous Mater. 293, 109797 (2020). doi: 10.1016/j.micromeso.2019.109797
    [33]
    A. Raj, M. Kumar, D. Mishra, and A. Anshul, Opt. Mater. 101, 109773 (2020). doi: 10.1016/j.optmat.2020.109773
    [34]
    K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y. L. Lee, A. Grimaud, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 3264 (2012). doi: 10.1021/jz301414z
    [35]
    J. I. Jung and D. D. Edwards, J. Solid State Chem. 184, 2238 (2011). doi: 10.1016/j.jssc.2011.06.016
    [36]
    Q. Luo, D. Lin, W. Zhan, W. Zhang, L. Tang, J. Luo, Z. Gao, P. Jiang, M. Wang, L. Hao, and K. Tang, ACS Appl. Energy Mater. 3, 7149 (2020). doi: 10.1021/acsaem.0c01192
    [37]
    L. Tang, W. Zhang, D. Lin, Y. Ren, H. Zheng, Q. Luo, L. Wei, H. Liu, J. Chen, and K. Tang, Inorg. Chem. Front. 7, 4488 (2020). doi: 10.1039/D0QI00754D
    [38]
    F. Dong, L. Li, Z. Kong, X. Xu, Y. Zhang, Z. Gao, B. Dongyang, M. Ni, Q. Liu, and Z. Lin, Small 17, 2006638 (2021). doi: 10.1002/smll.202006638
    [39]
    X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, and Z. Shao, Adv. Mater. 28, 6442 (2016). doi: 10.1002/adma.201600005
    [40]
    P. Anand, M. S. Wong, and Y. P. Fu, Sustain. Energy Fuels 5, 4858 (2021). doi: 10.1039/D1SE01054A
    [41]
    C. Hu, X. Wang, T. Yao, T. Gao, J. Han, X. Zhang, Y. Zhang, P. Xu, and B. Song, Adv. Funct. Mater. 29, 1902449 (2019). doi: 10.1002/adfm.201902449
    [42]
    G. Zhang and J. H. Li, Chin. J. Chem. Phys. 31, 517 (2018). doi: 10.1063/1674-0068/31/cjcp1805127
    [43]
    D. Aegerter, M. Borlaf, E. Fabbri, A. H. Clark, M. Nachtegaal, T. Graule, and T. J. Schmidt, Catalysts 10, 984 (2020). doi: 10.3390/catal10090984
    [44]
    E. Fabbri, M. Nachtegaal, X. Cheng, and T. J. Schmidt, Adv. Energy Mater. 5, 1402033 (2015). doi: 10.1002/aenm.201402033
    [45]
    S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke, W. F. Pong, Y. Chen, Y. Song, M. Liang, C. T. Chen, H. Wang, W. Zhou, and Z. Shao, Adv. Funct. Mater. 32, 2111091 (2021). doi: 10.1002/adfm.202111091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (467) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return