Turn off MathJax
Article Contents
Zhengxin Wang, Jiaming Jiang, Yifan Huang, Weimin Liu. Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203046
Citation: Zhengxin Wang, Jiaming Jiang, Yifan Huang, Weimin Liu. Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203046

Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy

doi: 10.1063/1674-0068/cjcp2203046
More Information
  • Understanding the mechanism of how micro-environments affect molecular rotors helps the design and development of molecular sensors. Here, we utilized femtosecond stimulated Raman spectroscopy, helped by quantum chemical calculation, to study the structural dynamics of 9-(2,2-dicyanovinyl) julolidine in cyclohexane, THF, and DMSO solvents. The obtained hydrogen out-of-plane (HOOP) mode and symmetric/anti-symmetric stretching of two nitriles (C≡N) indicate the rotation of the C7=C8 double bond and C4−C7 single bond in the excited-state which provide two non-radiative decay channels to effectively quench the excited-state population on local excited (LE) state via isomerization and twisted intramolecular charge transfer (TICT). In nonpolar solvent, the excited molecule in the LE state radiatively relaxes to the ground state or performs rotation motions via isomerization and TICT to deactivate fluorescence in the LE state. In the polar solvent, the isomerization plays a role to quench the LE state population; simultaneously, an ultrafast intramolecular charge transfer (ICT) from LE state to emissive ICT state was followed by an TICT between ICT state and dark ICT’ state.

     

  • loading
  • [1]
    T. D. James and S. Shinkai, in Host-Guest Chemistry: Mimetic Approaches to Study Carbohydrate Recognition, S. Penadés Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 159 (2002).
    [2]
    M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, and E. A. Theodorakis, Chem. Biol. 8, 123 (2001). doi: 10.1016/S1074-5521(00)90061-9
    [3]
    T. Iio, M. Itakura, S. Takahashi, and S. Sawada, J. Biol. Chem. 109, 499 (1991).
    [4]
    P. Gautam and A. Harriman, J, Chem. Soc. Faraday Trans. 90, 697 (1994). doi: 10.1039/ft9949000697
    [5]
    Z. A. Dreger, J. O. White, and H. G. Drickamer, Chem. Phys. Lett. 290, 399 (1998). doi: 10.1016/S0009-2614(98)00580-6
    [6]
    C. E. Kung and J. K. Reed, Biochemistry-Us 28, 6678 (1989). doi: 10.1021/bi00442a022
    [7]
    T. Iwaki, C. Torigoe, M. Noji, and M. Nakanishi, Biochemistry-Us 32, 7589 (1993). doi: 10.1021/bi00080a034
    [8]
    M. A. Haidekker and E. A. Theodorakis, Org. Biomol. Chem. 5, 1669 (2007). doi: 10.1039/B618415D
    [9]
    K. I. Gutkowski, M. L. Japas, and P. F. Aramendía, Chem. Phys. Lett. 426, 329 (2006). doi: 10.1016/j.cplett.2006.06.027
    [10]
    A. Paul and A. Samanta, J. Phys. Chem. B 112, 16626 (2008). doi: 10.1021/jp8060575
    [11]
    A. Safarzadeh-Amiri, Chem. Phys. Lett. 129, 225 (1986). doi: 10.1016/0009-2614(86)80201-9
    [12]
    A. Y. Jee, E. Bae, and M. Lee, J. Phys. Chem. B 113, 16508 (2009). doi: 10.1021/jp908430w
    [13]
    S. Q. Yang and K. L. Han, J. Phys. Chem. A 120, 4961 (2016). doi: 10.1021/acs.jpca.5b12612
    [14]
    M. S. A. Abdel-Mottaleb, R. O. Loutfy, and R. Lapouyade, J. Photochem. Photobiol. A 48, 87 (1989). doi: 10.1016/1010-6030(89)87093-5
    [15]
    S. Mqadmi and A. Pollet, J. Photochem. Photobiol. A 53, 275 (1990). doi: 10.1016/1010-6030(90)87131-T
    [16]
    M. Blanchard-Desce, R. Wortmann, S. Lebus, J. M. Lehn, and P. Krämer, Chem. Phys. Lett. 243, 526 (1995). doi: 10.1016/0009-2614(95)00895-B
    [17]
    A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, J. Chem. Phys. 116, 2542 (2002). doi: 10.1063/1.1433966
    [18]
    A. M. Moran, A. M. Kelley, and S. Tretiak, Chem. Phys. Lett. 367, 293 (2003). doi: 10.1016/S0009-2614(02)01583-X
    [19]
    H. Jin, M. Liang, S. Arzhantsev, X. Li, and M. Maroncelli, J. Phys. Chem B 114, 7565 (2010). doi: 10.1021/jp100908a
    [20]
    R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986). doi: 10.1351/pac198658091239
    [21]
    J. Guthmuller and B. Champagne, J. Chem. Phys. 127, 164507 (2007). doi: 10.1063/1.2790907
    [22]
    J. Wei, Y. Wu, R. Pu, L. Shi, J. Jiang, J. Du, Z. Guo, Y. Huang, and W. Liu, J. Phys. Chem. Lett. 12, 4466 (2021). doi: 10.1021/acs.jpclett.1c00202
    [23]
    W. Xu, L. Wei, Z. Wang, R. Zhu, J. Jiang, H. Liu, J. Du, T. C. Weng, Y. B. Zhang, Y. Huang, and W. Liu, J. Phys. Chem. B 125, 10796 (2021). doi: 10.1021/acs.jpcb.1c05936
    [24]
    W. Zhang, W. Xu, G. Zhang, J. Kong, X. Niu, J. M. W. Chan, W. Liu, and A. Xia, J. Phys. Chem. B 125, 4456 (2021). doi: 10.1021/acs.jpcb.1c01742
    [25]
    W. Liu, L. Tang, B. G. Oscar, Y. Wang, C. Chen, and C. Fang, J. Phys. Chem. Lett. 8, 997 (2017). doi: 10.1021/acs.jpclett.7b00322
    [26]
    W. Liu, Y. Wang, L. Tang, B. G. Oscar, L. Zhu, and C. Fang, Chem. Sci. 7, 5484 (2016). doi: 10.1039/C6SC00672H
    [27]
    B. Mennucci, C. Cappelli, R. Cammi, and J. Tomasi, Theor. Chem. Acc. 117, 1029 (2007). doi: 10.1007/s00214-006-0221-2
    [28]
    T. Subina, S. Amirjalayer, B. Mennucci, S. Woutersen, M. Hilbers, D. Bonn, and A. M. Brouwer, J. Phys. Chem. Lett. 7, 4285 (2016). doi: 10.1021/acs.jpclett.6b02277
    [29]
    G. Duvanel, J. Grilj, H. Chaumeil, P. Jacques, and E. Vauthey, Photochem. Photobiol. Sci. 9, 908 (2010). doi: 10.1039/c0pp00042f
    [30]
    B. Boldrini, E. Cavalli, A. Painelli, and F. Terenziani, J. Phys. Chem. A 106, 6286 (2002). doi: 10.1021/jp020031b
    [31]
    S. Arzhantsev, K. A. Zachariasse, and M. Maroncelli, J. Phys. Chem. A 110, 3454 (2006).
    [32]
    O. Weingart, Chem. Phys. 349, 348 (2008). doi: 10.1016/j.chemphys.2008.02.020
    [33]
    E. V. Gromov, J. Chem. Phys. 141, 224308 (2014). doi: 10.1063/1.4903174
    [34]
    E. V. Gromov, I. Burghardt, H. Köppel, and L. S. Cederbaum, J. Phys. Chem. A 115, 9237 (2011). doi: 10.1021/jp2011843
    [35]
    P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005). doi: 10.1126/science.1118379
    [36]
    J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, Proc. Natl. Acad. Sci. USA 106, 1784 (2009). doi: 10.1073/pnas.0812056106
    [37]
    B. D. Allen, A. C. Benniston, A. Harriman, S. A. Rostron, and C. F. Yu, Phys. Chem. Chem. Phys. 7, 3035 (2005). doi: 10.1039/b507165h
    [38]
    Y. Zhang, L. Yuan, S. Jia, X. Liu, J. Zhao, and G. Yin, Phys. Chem. Chem. Phys. 21, 3218 (2019). doi: 10.1039/C8CP07127F
    [39]
    J. Mei, J. Z. Sun, A. Qin, and B. Z. Tang, Dyes Pigm. 141, 366 (2017). doi: 10.1016/j.dyepig.2017.02.039
    [40]
    W. Zhang, J. Kong, W. Xu, X. Niu, D. Song, W. Liu, and A. Xia, Chin. J. Chem. Phys. 35, 69 (2022). doi: 10.1063/1674-0068/cjcp2111223
    [41]
    O. Louant, B. Champagne, and V. Liegeois, Chem. Phys. Lett. 634, 249 (2015). doi: 10.1016/j.cplett.2015.06.014
    [42]
    Y. N. Mabkhot, S. S. Al-Showiman, A. Barakat, S. M. Soliman, N. A. Kheder, M. M. Alharbi, A. Asayari, A. B. Muhsinah, A. Ullah, and S. L. Badshah, BMC Chemistry 13, 25 (2019). doi: 10.1186/s13065-019-0542-6
    [43]
    Monika, S. Inaoka, K. Iwata, and S. Saha, Spectrochim. Acta A Mol. Biomol. Spectrosc. 224, 117419 (2020). doi: 10.1016/j.saa.2019.117419
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (450) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return