Turn off MathJax
Article Contents
Wence Ding, Guang Liu, Xiaobo Li, Guanghui Zhou. Tuning the Exponential Decay Factor in Oligophenylene Molecular Junctions with Graphene Nanoribbon Electrodes[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2112285
Citation: Wence Ding, Guang Liu, Xiaobo Li, Guanghui Zhou. Tuning the Exponential Decay Factor in Oligophenylene Molecular Junctions with Graphene Nanoribbon Electrodes[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2112285

Tuning the Exponential Decay Factor in Oligophenylene Molecular Junctions with Graphene Nanoribbon Electrodes

doi: 10.1063/1674-0068/cjcp2112285
More Information
  • Corresponding author: E-mail: ghzhou@hunnu.edu.cn
  • Received Date: 2021-12-24
  • Accepted Date: 2022-03-23
  • Available Online: 2022-04-20
  • We explore the transport properties of oligophenylene molecular junctions, where the center molecule containing 1, 2, or 3 phenyls is sandwiched between two graphene nanoribbons (GNR) with different edge shapes. According to the obtained results of the first-principles calculations combined with non-equilibrium Green's function method, we find that the molecular length-dependent resistance of all examined oligophenylene molecular junctions follows well the exponential decay law with different slopes, and the exponential decay factor is sensitive to the edge shape of GNRs and the molecule-electrode connecting configuration. These observations indicate that the current through the oligophenylene molecular junction can be effectively tuned by changing the edge shape of GNRs, the molecular length, and the molecular contacting configuration. These findings provide theoretical insight into the design of molecular devices using GNRs as electrodes.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1
    [2]
    D. Xiang, X. L. Wang, C. C. Jia, T. Lee, and X. F. Guo, Chem. Rev. 116, 4318 (2016). doi: 10.1021/acs.chemrev.5b00680
    [3]
    M. Magoga and C. Joachim, Phys. Rev. 56, 4722 (1997). doi: 10.1103/PhysRevB56.4722
    [4]
    D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, J. Phys. Chem. B 106, 2813 (2002). doi: 10.1021/jp013476t
    [5]
    T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, and H. Tokumoto, J. Phys. Chem. B 106, 5886 (2002). doi: 10.1021/jp0134749
    [6]
    C. C. Kaun and H. Guo, Nano. Lett. 3, 1521 (2003). doi: 10.1021/nl0346023
    [7]
    C. C. Kaun, B. Larade, and H. Guo, Phys. Rev. B. 67, 121411(R) (2003). doi: 10.1103/PhysRevB.67.121411
    [8]
    T. Tada, D. Nozaki, M. Kondo, S. Hamayama, and K. Yoshizawa, J. Am. Chem. Soc. 126, 14182 (2004). doi: 10.1021/ja031736+
    [9]
    B. S. Kim, J. M. Beebe, Y. Jun, X. Y. Zhu, and C. D. Frisbie, J. Am. Chem. Soc. 128, 4970 (2006). doi: 10.1021/ja0607990
    [10]
    M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997). doi: 10.1126/science.278.5336.252
    [11]
    J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999). doi: 10.1126/science.286.5444.1550
    [12]
    Z. T. Xie, I. Baldea, C. E. Smith, Y. F. Wu, and C. D. Frisbie, ACS Nano 9, 8022 (2015). doi: 10.1021/acsnano.5b01629
    [13]
    Y. Tsuji, R. Movassagh, S. Datta, and R. Hoffmann, ACS Nano 9, 11109 (2015). doi: 10.1021/acsnano.5b04615
    [14]
    Y. X. Zhai, G. M. Ji, C. F. Fang, B. Cui, P. G. Zhao, and D. S. Liu, Sci. China Phys. Mech. 54, 1455 (2011). doi: 10.1007/s11431-011-4366-4
    [15]
    H. Q. Wan, B. H. Zhou, X. W. Chen, C. Q. Sun, and G. H. Zhou, J. Phys. Chem. C 116, 2570 (2012). doi: 10.1021/jp2092576
    [16]
    C. Herrmann, G. C. Solomon, J. E. Subotnik, V. Mujica, and M. A. Ratner, J. Chem. Phys. 132, 024103 (2010). doi: 10.1063/1.3283062
    [17]
    P. P. Pal and B. D. Dunietz, J. Chem. Phys. 137, 194104 (2012). doi: 10.1063/1.4767344
    [18]
    S. L. Liu, Y. P. Feng, and C. Zhang, J. Chem. Phys. 139, 191103 (2013). doi: 10.1063/1.4833677
    [19]
    A. Mahmoud and P. Lugli, Appl. Phys. Lett. 103, 033506 (2013). doi: 10.1063/1.4813844
    [20]
    Y. J. Li, P. Zolotavin, P. Doak, L. Kronik, J. B. Neaton, and D. Natelson, Nano Lett. 16, 1104 (2016). doi: 10.1021/acs.nanolett.5b04340
    [21]
    A. Batra, P. Darancet, Q. S. Chen, J. S. Meisner, J. R. Widawsky, J. B. Neaton, C. Nuckolls, and L. Venkataraman, Nano Lett. 13, 6233 (2013). doi: 10.1021/nl403698m
    [22]
    M. L. Du, Y. J. Hu, J. Huang, and Q. X. Li, Chin. J. Chem. Phys. 31, 33 (2018). doi: 10.1063/1674-0068/31/cjcp1706117
    [23]
    M. L. Wang, G. P. Zhang, X. X. Fu, and C. K. Wang, Chin. J. Chem. Phys. 33, 697 (2020). doi: 10.1063/1674-0068/cjcp1911204
    [24]
    N. Atodiresei, J. Brede, P. Lazić, V. Caciuc, G. Hoffmann, R. Wiesendanger, and S. Blüge, Phys. Rev. Lett. 105, 066601 (2010). doi: 10.1103/PhysRevLett.105.066601
    [25]
    J. Hihath, C. Bruot, H. Nakamura, Y. Asai, I. Díez-Pérez, Y. Lee, L. P. Yu, and N. J. Tao, ACS Nano 5, 8331 (2011). doi: 10.1021/nn2030644
    [26]
    E. Burzurí, Y. Yamamoto, M. Warnock, X. L Zhong, K. Park, A. Cornia, and H. S. J. van der Zant, Nano Lett. 14, 3191 (2014). doi: 10.1021/nl500524w
    [27]
    F. M. Hossain, F. Al-Dirini, and E. Skafidas, Appl. Phys. Lett. 105, 043102 (2014). doi: 10.1063/1.4891857
    [28]
    A. K. Geim and K. S. Novselov, Nat. Mater. 6, 183 (2007). doi: 10.1038/nmat1849
    [29]
    X. T. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. CamposDelgado, J. M. Romo-Herrera, H. Son, Y. P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701 (2009). doi: 10.1126/science.1166862
    [30]
    P. Ruffieux, S. Y. Wang, B. Yang, C. Sanchez-Sanchez1, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. L. Feng, K. Mllen, and R. Fasel, Nature 531, 489 (2016). doi: 10.1038/nature17151
    [31]
    D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009). doi: 10.1038/nature07872
    [32]
    C. G. Tao, L. Y. Jiao, O. V. Yazyev, Y. C. Chen, J. J. Feng, X. W. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. J. Dai, and M. F. Crommie, Nature Phys. 7, 616 (2011). doi: 10.1038/nphys1991
    [33]
    X. L. Li, X. R. Wang, L. Zhang, S. Lee, and H. J. Dai, Science 319, 1229 (2008). doi: 10.1126/science.1150878
    [34]
    M. H. Pan, E. C. Girão, X. T. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S. Dresselhaus, Nano Lett. 12, 1928 (2012). doi: 10.1021/nl204392s
    [35]
    O. V. Yazyev, R. B. Capaz, and S. G. Louie, Phys. Rev. B 84, 115406 (2011). doi: 10.1103/PhysRevB.84.115406
    [36]
    F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-Alcalde, L. Vandersypen, and H. S. J. van der Zant, Nano Lett. 11, 4607 (2011). doi: 10.1021/nl202065x
    [37]
    Y. Cao, S. H. Dong, S. Liu, L. He, L. Gan, X. M. Yu, M. L. Steigerwald, X. S. Wu, Z. F Liu, and X. F. Guo, Angew. Chem. Int. Ed. 51, 12228 (2012). doi: 10.1002/anie.201205607
    [38]
    H. Q. Wan, Y. Xu, and G. H. Zhou, J. Chem. Phys. 136, 184704 (2012). doi: 10.1063/1.4712615
    [39]
    K. Ullmann, P. B. Coto, S. Leitherer, A. Molina-Ontoria, N. Martín, M. Thoss, and H. B. Weber, Nano Lett. 15, 3512 (2015). doi: 10.1021/acs.nanolett.5b00877
    [40]
    X. B. Li, H. L. Li, H. Q. Wan, and G. H. Zhou, Org. Electron. 19, 26 (2015). doi: 10.1016/j.orgel.2015.01.006
    [41]
    C. C. Jia, A. Migliore, N. Xin, S. Y. Huang, J. Y. Wang, Q. Yang, S. P. Wang, H. L. Chen, D. M. Wang, B. Y. Feng, Z. R. Liu, G. Y. Zhang, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. F. Guo, Science 352, 1443 (2016). doi: 10.1126/science.aaf6298
    [42]
    S. G. Sarwat, P. Gehring, G. R. Hernandez, J. H. Warner, G. Andrew, D. Briggs, J. A. Mol, and H. Bhaskaran, Nano Lett. 17, 3688 (2017). doi: 10.1021/acs.nanolett.7b00909
    [43]
    H. J. Yan, A. J. Bergren, and R. L. McCreery, J. Am. Chem. Soc. 133, 19168 (2011). doi: 10.1021/ja206619a
    [44]
    J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104 (2001). doi: 10.1103/PhysRevB.63.121104
    [45]
    J. M Soler, E. Artacho, J. D Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). doi: 10.1088/0953-8984/14/11/302
    [46]
    G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. A. Ratner, Nature Chem. 2, 223 (2010). doi: 10.1038/nchem.546
    [47]
    X. W. Chen, K. H. Song, B. H. Zhou, H. Y. Wang, and G. H. Zhou, Appl. Phys. Lett. 98, 093111 (2011). doi: 10.1063/1.3555445
    [48]
    X. W. Chen, Z. G. Shi, B. J. Chen, K. H. Song, and G. H. Zhou, Carbon 72, 365 (2014). doi: 10.1016/j.carbon.2014.02.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (507) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return