Processing math: 100%

Advanced Search
Bayaer Buren, Ye Mao, Zijiang Yang, Maodu Chen. Non-adiabatic Couplings Induced Complex-Forming Mechanism in H+MgH+Mg++H2 Reaction[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 345-352. DOI: 10.1063/1674-0068/cjcp2111237
Citation: Bayaer Buren, Ye Mao, Zijiang Yang, Maodu Chen. Non-adiabatic Couplings Induced Complex-Forming Mechanism in H+MgH+Mg++H2 Reaction[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 345-352. DOI: 10.1063/1674-0068/cjcp2111237

Non-adiabatic Couplings Induced Complex-Forming Mechanism in H+MgH+Mg++H2 Reaction

More Information
  • Corresponding author:

    Maodu Chen, E-mail: mdchen@dlut.edu.cn

  • Received Date: November 16, 2021
  • Accepted Date: December 14, 2021
  • Available Online: January 27, 2022
  • Issue Publish Date: April 26, 2022
  • A chemical process may involve multiple adiabatic electronic states, and non-adiabatic couplings play an important role in the reaction mechanism. In this work, the effect of non-adiabatic couplings in the H+MgH+Mg++H2 reaction are studied using the time-dependent wave packet method and trajectory surface hopping method. The calculated results show that the reaction follows a direct abstraction process when the non-adiabatic couplings are neglected. However, when non-adiabatic couplings are included in the calculations, a long-lived excited state complex (MgH2+) can be formed during the reaction. These direct and complex-forming reaction pathways are revealed by trajectory surface hopping calculations. The non-adiabatic couplings induced complex-forming mechanism not only increases the reactivity but also has significant effect on the product vibrational state distribution.
  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".

  • [1]
    D. Yuan, Y. Guan, W. Chen, H. Zhao, S. Yu, C. Luo, Y. Tan, T. Xie, X. Wang, and Z. Sun, Science 362, 1289 (2018). doi: 10.1126/science.aav1356
    [2]
    B. K. Kendrick, J. Hazra, and N. Balakrishnan, Phys. Rev. Lett. 115, 153201 (2015). doi: 10.1103/PhysRevLett.115.153201
    [3]
    J. C. Juanes-Marcos, S. C. Althorpe, and E. Wrede, Science 309, 1227 (2005). doi: 10.1126/science.1114890
    [4]
    X. Wang, W. Dong, C. Xiao, L. Che, Z. Ren, D. Dai, X. Wang, P. Casavecchia, X. Yang, and B. Jiang, Science 322, 573 (2008). doi: 10.1126/science.1163195
    [5]
    W. Chen, R. Wang, D. Yuan, H. Zhao, C. Luo, Y. Tan, S. Li, D. H. Zhang, X. Wang, Z. Sun, and X. Yang, Science 371, 936 (2021). doi: 10.1126/science.abf4205
    [6]
    M. H. Alexander, G. Capecchi, and H. J. Werner, Science 296, 715 (2002). doi: 10.1126/science.1070472
    [7]
    B. Zhao, S. Han, C. L. Malbon, U. Manthe, D. R. Yarkony, and H. Guo, Nat. Chem. 13, 909 (2021). doi: 10.1038/s41557-021-00730-1
    [8]
    A. Aguado, O. Roncero, and C. Sanz-Sanz, Phys. Chem. Chem. Phys. 23, 7735 (2021). doi: 10.1039/D0CP04100A
    [9]
    Z. Yang, J. Yuan, S. Wang, and M. Chen, RSC Adv. 8, 22823 (2018). doi: 10.1039/C8RA04305A
    [10]
    H. Guo and D. R. Yarkony, Phys. Chem. Chem. Phys. 18, 26335 (2016). doi: 10.1039/C6CP05553B
    [11]
    D. R. Yarkony, Chem. Rev. 112, 481 (2012). doi: 10.1021/cr2001299
    [12]
    Z. Yin, B. J. Braams, Y. Guan, B. Fu, and D. H. Zhang, Phys. Chem. Chem. Phys. 23, 1082 (2021). doi: 10.1039/D0CP05047D
    [13]
    Y. Guan, D. H. Zhang, H. Guo, and D. R. Yarkony, Phys. Chem. Chem. Phys. 21, 14205 (2019). doi: 10.1039/C8CP06598E
    [14]
    Y. Guan, B. Fu, and D. H. Zhang, J. Chem. Phys. 147, 224307 (2017). doi: 10.1063/1.5007031
    [15]
    Z. Yin, B. J. Braams, B. Fu, and D. H. Zhang, J. Chem. Theory Comput. 17, 1678 (2021). doi: 10.1021/acs.jctc.0c01336
    [16]
    C. Xie, X. Zhu, D. R. Yarkony, and H. Guo, J. Chem. Phys. 149, 144107 (2018). doi: 10.1063/1.5054310
    [17]
    M. Baer, Phys. Rep. 358, 75 (2002). doi: 10.1016/S0370-1573(01)00052-7
    [18]
    J. Zheng, Z. H. Li, A. W. Jasper, D. A. Bonhommeau, R. Valero, R. Meana-Pañeda, S. L. Mielke, L. Zhang, Z. Varga, and D. G. Truhlar, ANT Version 2020, University of Minnesota, (2020).
    [19]
    M. Barbatti, WIREs Comput. Mol. Sci. 1, 620 (2011). doi: 10.1002/wcms.64
    [20]
    L. Wang, J. Qiu, X. Bai, and J. Xu, WIREs Comput. Mol. Sci. 10, e1435 (2020).
    [21]
    M. Barbatti, WIREs Comput. Mol. Sci. 1, 620 (2011). doi: 10.1002/wcms.64
    [22]
    V. Dryza, B. L. Poad, and E. J. Bieske, J. Phys. Chem. A 113, 199 (2009). doi: 10.1021/jp808807r
    [23]
    M. Satta, M. Marquéz-Mijares, E. Yurtsever, S. Bovino, and F. A. Gianturco, Int. J. Mass Spectrom. 351, 47 (2013). doi: 10.1016/j.ijms.2013.03.019
    [24]
    V. Dryza, E. J. Bieske, A. A. Buchachenko, and J. Kłos, J. Chem. Phys. 134, 044310 (2011). doi: 10.1063/1.3530800
    [25]
    A. Durandin, T. M. Liu, M. Pope, S. C. Sheu, and N. E. Geacintov, J. Phys. Chem. 97, 2 (1993). doi: 10.1021/j100103a001
    [26]
    C. W. Bauschlicher, Chem. Phys. Lett. 201, 11 (1993). doi: 10.1016/0009-2614(93)85025-J
    [27]
    P. D. Kleiber and J. Chen, Inter. Rev. Phys. Chem. 17, 1 (1998). doi: 10.1080/014423598230153
    [28]
    N. F. Dalleska, K. C. Crellin, and P. B. Armentrout, J. Phys. Chem. 97, 3123 (1993). doi: 10.1021/j100115a010
    [29]
    P. F. Staanum, K. Højbjerre, R. Wester, and M. Drewsen, Phys. Rev. Lett. 100, 243003 (2008). doi: 10.1103/PhysRevLett.100.243003
    [30]
    J. Yuan, D. He, S. Wang, M. Chen, and K. Han, Phys. Chem. Chem. Phys. 20, 6638 (2018). doi: 10.1039/C7CP08679B
    [31]
    Y. Mao, Z. Yang, B. Buren, and M. Chen, Chem. Phys. 550, 111311 (2021). doi: 10.1016/j.chemphys.2021.111311
    [32]
    Y. Mao, J. Yuan, Z. Yang, and M. Chen, Sci. Rep. 10, 3410 (2020). doi: 10.1038/s41598-020-60033-2
    [33]
    J. Z. H. Zhang, Theory Application of Quantum Molecular Dynamics, Singapore: World Scientific, (1998).
    [34]
    S. C. Althorpe and D. C. Clary, Ann. Rev. Phys. Chem. 54, 493 (2003). doi: 10.1146/annurev.physchem.54.011002.103750
    [35]
    N. Sathyamurthy and S. Mahapatra, Phys. Chem. Chem. Phys. 23, 7586 (2021).
    [36]
    D. H. Zhang and H. Guo, Ann Rev. Phys. Chem. 67, 135 (2016). doi: 10.1146/annurev-physchem-040215-112016
    [37]
    Z. Sun, X. Lin, S. Y. Lee, and D. H. Zhang, J. Phys. Chem. A 113, 4145 (2009). doi: 10.1021/jp810512j
    [38]
    Z. G. Sun, H. Guo, and D. H. Zhang, J. Chem. Phys. 132, 084112 (2010). doi: 10.1063/1.3328109
    [39]
    S. Gómez-Carrasco and O. Roncero, J. Chem. Phys. 125, 054102 (2006). doi: 10.1063/1.2218337
    [40]
    J. C. Light and T. Carrington Jr., Adv. Chem. Phys. 114, 263 (2000).
    [41]
    J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992). doi: 10.1016/0009-2614(92)85330-D
    [42]
    M. Feit, J. Fleck Jr. and A. Steiger, J. Comput. Phys. 47, 412 (1982).
    [43]
    A. W. Jasper and D. G. Truhlar, J. Chem. Phys. 127, 194306 (2007). doi: 10.1063/1.2798763
    [44]
    A. W. Jasper, S. N. Stechmann, and D. G. Truhlar, J. Chem. Phys. 116, 5424 (2002).
    [45]
    J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
  • Related Articles

    [1]Hong-yu Ma, Cheng-yuan Zhang, Yu-zhi Song, Feng-cai Ma, Yong-qing Li. Time-Dependent Quantum Wave Packet Calculation for Reaction S(2P)+ H2(1Σ+g) SH(1Σ)+H(2S) on Ab Initio Potential Energy Surface[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 338-344. DOI: 10.1063/1674-0068/cjcp2111239
    [2]Mingjuan Yang, Tong Cheng, Rui Zheng, Hongwei Song, Minghui Yang. Ten-Dimensional Quantum Dynamics Study of H+CH3DH2+CH2D Reaction[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 213-218. DOI: 10.1063/1674-0068/cjcp2112284
    [3]Zhimo Wang, Changjian Xie. Kinetics and Dynamics of the H(2S)+NO(X2Π)N(4S)+OH(X2Π) Reaction: A Quasi-classical Trajectory Study[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 207-212. DOI: 10.1063/1674-0068/cjcp2111262
    [4]Haipan Xiang, Yunpeng Lu, Hongwei Song, Minghui Yang. Mode-Specific Quantum Dynamics Study of OH+H2SH2O+SH Reaction[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 200-206. DOI: 10.1063/1674-0068/cjcp2112278
    [5]Jianwei Cao, Yanan Wu, Wensheng Bian. Ring Polymer Molecular Dynamics of the C(1D)+H2 Reaction on the Most Recent Potential Energy Surfaces[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 833-842. DOI: 10.1063/1674-0068/cjcp2110197
    [6]Yin Huang, Hai-lin Zhao, Syed Kazim Usman, Ganiyu Ayodele Ajibade, Zhi-gang Sun. High-Accurate Transparent Boundary Conditions for Time-Dependent Quantum Wave Packet Method[J]. Chinese Journal of Chemical Physics , 2020, 33(2): 258-262. DOI: 10.1063/1674-0068/cjcp1909167
    [7]Dong Yan, Yu-jie Ma, Fang-fang Li, Jia-xing Liu, Guan-jun Wang, Feng-yan Wang. Imaging Reaction Dynamics of Y+SO2[J]. Chinese Journal of Chemical Physics , 2020, 33(2): 239-242. DOI: 10.1063/1674-0068/cjcp2002029
    [8]Björn Bastian, Tim Michaelsen, Milan Ončák, Jennifer Meyer, Roland Wester. F(H2O)+CH3I Ligand Exchange Reaction Dynamics[J]. Chinese Journal of Chemical Physics , 2020, 33(2): 210-216. DOI: 10.1063/1674-0068/cjcp2002018
    [9]Wen-tao Li, Mao-du Chen, Zhi-gang Sun. Quantum Dynamics of Li+HF/DF Reaction Investigated by a State-to-State Time-dependent Wave Packet Approach[J]. Chinese Journal of Chemical Physics , 2015, 28(4): 415-425. DOI: 10.1063/1674-0068/28/cjcp1507151
    [10]Xie Tingxian, Zhang Yan, Han Keli. The Coriolis Coupling Effects on the Non-adiabatic Reaction of Cl+H2→H+HCl[J]. Chinese Journal of Chemical Physics , 2004, 17(6): 657-659. DOI: 10.1088/1674-0068/17/6/657-659

Catalog

    Figures(5)  /  Tables(1)

    Article Metrics

    Article views (386) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return