Processing math: 100%

Advanced Search
Xiao-Long Zhang, Hui Li. Three-Dimensional ab initio Potential Energy Surface and Predicted Spectra for the CH4-Ne Complex[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 874-882. DOI: 10.1063/1674-0068/cjcp2110205
Citation: Xiao-Long Zhang, Hui Li. Three-Dimensional ab initio Potential Energy Surface and Predicted Spectra for the CH4-Ne Complex[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 874-882. DOI: 10.1063/1674-0068/cjcp2110205

Three-Dimensional ab initio Potential Energy Surface and Predicted Spectra for the CH4-Ne Complex

More Information
  • Corresponding author:

    Hui Li, E-mail: prof_huili@jlu.edu.cn

  • Received Date: October 17, 2021
  • Accepted Date: December 06, 2021
  • Available Online: December 09, 2021
  • Issue Publish Date: December 26, 2021
  • We present a new three-dimensional potential energy surface (PES) for CH4-Ne complex. The electronic structure computations were carried out using the coupled-cluster method with singles, doubles, and perturbative triples [CCSD(T)], the augmented correlation-consistent aug-cc-pVXZ (X = T, Q) basis sets were employed with bond functions placed at the mid-point on the intermolecular axis, and the energies obtained were then extrapolated to the complete basis set limit. Analytic intermolecular PES is obtained by least-squares fitting to the Morse/Long-Range (MLR) potential function form. These fits to 664 points have root-mean-square deviations of 0.042 cm1. The bound rovibrational levels are calculated for the first time, and the predicted infrared spectra are in good agreement with the experimental values. The microwave spectra for CH4-Ne dimer have also been predicted for the first time. The analytic PES can be used for modeling the dynamical behavior in CH4-(Ne)N clusters, and it will be useful for future studies of the collision-induced-absorption for the CH4-Ne dimer.
  • Part of Special Issue “John Z.H. Zhang Festschrift for celebrating his 60th birthday”.

  • [1]
    R. Hellmann, E. Bich, and E. Vogel, J. Chem. Phys. 128, 214303 (2008). doi: 10.1063/1.2932103
    [2]
    Y. N. Kalugina, V. N. Cherepanov, M. A. Buldakov, N. Zvereva-Lote, and V. Boudon, J. Chem. Phys. 131, 134304 (2009). doi: 10.1063/1.3242080
    [3]
    N. Zvereva-Lote, Y. N. Kalugina, V. Boudon, M. A. Buldakov, and V. N. Cherepanov, J. Chem. Phys. 133, 184302 (2010). doi: 10.1063/1.3494539
    [4]
    R. Hellmann, E. Bich, E. Vogel, and V. Vesovic, J. Chem. Phys. 141, 224301 (2014). doi: 10.1063/1.4902807
    [5]
    A. A. Finenko, D. N. Chistikov, Y. N. Kalugina, E. K. Conway, and I. E. Gordon, Phys. Chem. Chem. Phys. 23, 18475 (2021). doi: 10.1039/D1CP02161C
    [6]
    E. Sahnoun, L. Wiesenfeld, and K. Hammami, J. Phys. Chem. A 124, 3242 (2020). doi: 10.1021/acs.jpca.9b10499
    [7]
    Y. Liu and W. Jager, J. Chem. Phys. 121, 6240 (2004). doi: 10.1063/1.1789872
    [8]
    L. A. Surin, I. V. Tarabukin, V. A. Panfilov, S. Schlemmer, Y. N. Kalugina, A. Faure, C. Rist, and A. van der Avoird, J. Chem. Phys. 143, 154303 (2015). doi: 10.1063/1.4933061
    [9]
    G. Calderoni, F. Cargnoni, R. Martinazzo, and M. Raimondi, J. Chem. Phys. 121, 8261 (2004). doi: 10.1063/1.1791111
    [10]
    T. G. A. Heijmen, T. Korona, R. Moszynski, P. E. S. Wormer, and A. van der Avoird, J. Chem. Phys. 107, 902 (1997). doi: 10.1063/1.474388
    [11]
    R. E. Miller, T. G. A. Heijmen, P. E. S. Wormer, A. van der Avoird, and R. Moszynski, J. Chem. Phys. 110, 5651 (1999). doi: 10.1063/1.478463
    [12]
    T. G. A. Heijmen, P. E. S. Wormer, A. van der Avoird, R. E. Miller, and R. Moszynski, J. Chem. Phys. 110, 5639 (1999). doi: 10.1063/1.478462
    [13]
    Y. N. Kalugina, S. E. Lokshtanov, V. N. Cherepanov, and A. A. Vigasin, J. Chem. Phys. 144, 054304 (2016). doi: 10.1063/1.4940779
    [14]
    Y. Liu and W. Jager, J. Chem. Phys. 120, 9047 (2004). doi: 10.1063/1.1691743
    [15]
    Q. Wen and W. Jager, J. Chem. Phys. 124, 014301 (2006). doi: 10.1063/1.2140269
    [16]
    U. Buck, A. Kohlhase, D. Secrest, T. Phillips, G. Scoles, and F. Grein, Mol. Phys. 55, 1233 (1985). doi: 10.1080/00268978500102001
    [17]
    M. E. Wangler, D. Roth, G. F. Winnewisser, I. Pak, and A. R. W. Mckellar, Can. J. Phys. 79, 423 (2001).
    [18]
    D. Yin and A. D. MacKerell, J. Chem. Phys. 100, 2588 (1996). doi: 10.1021/jp9521971
    [19]
    D. Gao, L. Chen, Z. Li, F. M. Tao, and Y. K. Pan, Chem. Phys. Lett. 277, 483 (1997). doi: 10.1016/S0009-2614(97)00938-X
    [20]
    Y. L. Bai, X. H. Cheng, X. R. Chen, X. D. Yang, and Z. Jun, Chin. Phys. Lett. 21, 1048 (2004). doi: 10.1088/0256-307X/21/6/019
    [21]
    F. Cargnoni, M. Mella, and M. Raimondi, Phys. Chem. Chem. Phys. 9, 2457 (2007). doi: 10.1039/B700143F
    [22]
    N. S. Dattani and R. J. Le Roy, J. Mol. Spectrosc. 268, 199 (2011). doi: 10.1016/j.jms.2011.03.030
    [23]
    K. Raghavachari, J. A. P. G. W. Trucks, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989). doi: 10.1016/S0009-2614(89)87395-6
    [24]
    D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). doi: 10.1063/1.464303
    [25]
    F. M. Tao and Y. K. Pan, Mol. Phys. 81, 507 (1994). doi: 10.1080/00268979400100331
    [26]
    T. B. Pedersen, B. Fernandez, H. Koch, and J. Makarewicz, J. Chem. Phys. 115, 8431 (2001). doi: 10.1063/1.1398102
    [27]
    F. Tao and Y. Pan, J. Chem. Phys. 97, 4989 (1992). doi: 10.1063/1.463852
    [28]
    N. N. Dutta and K. Patkowski, J. Chem. Theory Comput. 14, 3053 (2018). doi: 10.1021/acs.jctc.8b00204
    [29]
    M. Kodrycka and K. Patkowski, J. Chem. Phys. 151, 070901 (2019). doi: 10.1063/1.5116151
    [30]
    A. Karton and J. M. L. Martin, Theor. Chem. Acc. 115, 330 (2006). doi: 10.1007/s00214-005-0028-6
    [31]
    H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. D. P. O Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO, version 2010.1, a Package of ab initio Programs (2010).
    [32]
    S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). doi: 10.1080/00268977000101561
    [33]
    R. J. Le Roy, Y. Huang, and C. Jary, J. Chem. Phys. 125, 164310 (2006). doi: 10.1063/1.2354502
    [34]
    D. Hou, Y. T. Ma, X. L. Zhang, and H. Li, J. Chem. Phys. 144, 014301 (2016). doi: 10.1063/1.4939089
    [35]
    D. J. Margoliash and W. J. Meath, J. Chem. Phys. 68, 1426 (1978). doi: 10.1063/1.435963
    [36]
    R. J. Le Roy and A. Pashov, J. Quant. Spectrosc. Radiat. Transfer. 186, 210 (2017). doi: 10.1016/j.jqsrt.2016.03.036
    [37]
    Y. T. Ma, T. Zeng, and H. Li, J. Chem. Phys. 140, 214309 (2014). doi: 10.1063/1.4879956
    [38]
    T. Zeng, H. Li, R. J. Le Roy, and P. N. Roy, J. Chem. Phys. 135, 094304 (2011). doi: 10.1063/1.3626840
    [39]
    G. Tarrago, M. Dang-Nhu, G. Poussigue, G. Guelachvili, and C. Amiot, J. Mol. Spectrosc. 57, 246 (1975). doi: 10.1016/0022-2852(75)90028-4
    [40]
    M. Wangler, D. Roth, I. Pak, G. Winnewisser, P. Wormer, and A. van der Avoird, J. Mol. Spectrosc. 222, 109 (2003). doi: 10.1016/S0022-2852(03)00058-4
    [41]
    X. G. Wang and T. Carrington, J. Chem. Phys. 119, 94 (2003). doi: 10.1063/1.1559479
    [42]
    X. G. Wang and T. Carrington, J. Chem. Phys. 154, 124112 (2021). doi: 10.1063/5.0044010
    [43]
    Y. T. Ma, T. Zeng, and H. Li, J. Chem. Phys. 140, 214309 (2014). doi: 10.1063/1.4879956
    [44]
    H. S. Lee and J. C. Light, J. Chem. Phys. 120, 4626 (2004). doi: 10.1063/1.1646370
    [45]
    X. G. Wang and T. Carrington, J. Chem. Phys. 117, 6923 (2002). doi: 10.1063/1.1506911
    [46]
    X. L. Zhang, Y. T. Ma, Y. Zhai, and H. Li, J. Chem. Phys. 151, 074301 (2019). doi: 10.1063/1.5115496
    [47]
    A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51, 2238 (1983). doi: 10.1103/PhysRevLett.51.2238
    [48]
    H. Köppel, L. S. Cederbaum, and W. Domcke, J. Chem. Phys. 77, 2014 (1982). doi: 10.1063/1.444055
    [49]
    C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950). doi: 10.6028/jres.045.026
    [50]
    T. Zeng, H. Li, R. J. Le Roy, and P. N. Roy, J. Chem. Phys. 135, 094304 (2011). doi: 10.1063/1.3626840
    [51]
    J. M. Hutson, J. Chem. Phys. 92, 157 (1990). doi: 10.1063/1.458485
    [52]
    X. G. Wang and T. Carrington, J. Chem. Phys. 134, 044313 (2011). doi: 10.1063/1.3533230
    [53]
    J. M. Liu, Y. Zhai, and H. Li, J. Chem. Phys. 147, 044313 (2017). doi: 10.1063/1.4996086
  • Related Articles

    [1]Meng Zhang, Yongfa Zhu, Jun Li. Product Vibrational State Distributions of F+CH3OH Reaction on Full-Dimensional Accurate Potential Energy Surface[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 153-166. DOI: 10.1063/1674-0068/cjcp2111252
    [2]Juan Wang, Sven Herbers, Philipp Buschmann, Kevin Lengsfeld, Jens-Uwe Grabow, Gang Feng, Qian Gou. Rotational Spectra and Molecular Structures of Ethylanilines[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 119-124. DOI: 10.1063/1674-0068/cjcp1912215
    [3]Jun-hua Chen, Juan Wang, Gang Feng, Qian Gou. Rotational Spectra of 2, 3, 6-Trifluoropyridine: Effect of Fluorination on Ring Geometry[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 48-52. DOI: 10.1063/1674-0068/cjcp1910184
    [4]Dan Hou, Xiao-Long Zhang, Yu Zhai, Hui Li. The Role of High Excitations in Constructing Sub-spectroscopic Accuracy Intermolecular Potential of He-HCN: Critically Examined by the High-Resolution Spectra with Resonance States[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 776-788. DOI: 10.1063/1674-0068/30/cjcp1712231
    [5]Xin Xu, Jun Chen, Dong H. Zhang. Global Potential Energy Surface for the H+CH4→H2+CH3 Reaction usingNeural Networks (cited: 12)[J]. Chinese Journal of Chemical Physics , 2014, 27(4): 373-379. DOI: 10.1063/1674-0068/27/04/373-379
    [6]Jin-ping Lei, Yan-zi Zhou, Dai-qian Xie. Theoretical Study on the Rotational Spectra of Ar-D232S Complex[J]. Chinese Journal of Chemical Physics , 2013, 26(6): 656-660. DOI: 10.1063/1674-0068/26/06/656-660
    [7]Mei Niu, Xiao-tao Xu, Xia Chen, Xiao-long Hu, Xiao-long Hu. Three-dimensional Potential Energy Surface and Bound States of the Ar2-Ne Complex[J]. Chinese Journal of Chemical Physics , 2010, 23(5): 549-552. DOI: 10.1088/1674-0068/23/05/549-552
    [8]Yue Pan, Zhao-xiang Wang, Tao Kan, Xi-feng Zhu, Quan-xin Li. Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha and CH4 over C12A7-Mg Catalyst[J]. Chinese Journal of Chemical Physics , 2006, 19(3): 190-192. DOI: 10.1360/cjcp2006.19(3).190.3
    [9]Yu Yuanqin, Wang Hua, Shi Yong, Li Qifeng, Dai Jinghua, Liu Shilin, Ma Xingxiao. Photoacoustic Raman Spectroscopy with Two Counterprapagating Laser Beams[J]. Chinese Journal of Chemical Physics , 2004, 17(4): 385-389. DOI: 10.1088/1674-0068/17/4/385-389
    [10]Li Chunlin, Fu Yilu, Meng Ming, Bian Guozhu, Xie Yaning, Hu Tiandou, Zhang Jing. Influence of CO2 Reforming of CH4 Reaction Performance by Adding Vapor on Ni/CeO2-ZrO2-Al2O3 Catalyst[J]. Chinese Journal of Chemical Physics , 2004, 17(1): 95-99. DOI: 10.1088/1674-0068/17/1/95-99
  • Cited by

    Periodical cited type(1)

    1. Li, Y., Zhai, Y., Li, H. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. Journal of Chemical Theory and Computation, 2022. DOI:10.1021/acs.jctc.2c01049

    Other cited types(0)

Catalog

    Figures(6)  /  Tables(3)

    Article Metrics

    Article views (384) PDF downloads (31) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return