Citation: | Peter M. Felker, Zlatko Bačić. Intra- and Intermolecular Rovibrational States of HCl-H2O and DCl-H2O Dimers from Full-Dimensional and Fully Coupled Quantum Calculations[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 728-740. DOI: 10.1063/1674-0068/cjcp2110189 |
†Part of Special Issue "John Z.H. Zhang Festschrift for celebrating his 60th birthday".
[1] |
A. K. Samanta, Y. Wang, J. S. Mancini, J. M. Bowman, and H. Reisler, Chem. Rev. 116, 4913 (2016). doi: 10.1021/acs.chemrev.5b00506
|
[2] |
R. P. de Tudela and D. Marx, Phys. Rev. Lett. 119, 223001 (2017). doi: 10.1103/PhysRevLett.119.223001
|
[3] |
A. C. Legon and L. C. Willoughby, Chem. Phys. Lett. 95, 449 (1983). doi: 10.1016/0009-2614(83)80592-2
|
[4] |
Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon, and E. Steiner, J. Phys. Chem. A 104, 6970 (2000). doi: 10.1021/jp001156o
|
[5] |
M. Weimann, M. Farnik, and M. A. Suhm, Phys. Chem. Chem. Phys. 4, 3933 (2002). doi: 10.1039/B204840J
|
[6] |
M. Fárník, M. Weimann, and M. A. Suhm, J. Chem. Phys. 118, 10120 (2003). doi: 10.1063/1.1571525
|
[7] |
A. J. Honeycutt, R. J. Strickland, F. Hellberg, and R. J. Saykally, J. Chem. Phys. 118, 1221 (2003). doi: 10.1063/1.1529177
|
[8] |
M. Ortlieb, Ö. Birer, M. Letzner, G. D. Schwaab, and M. Havenith, J. Phys. Chem. A 111, 12192 (2007). doi: 10.1021/jp0759980
|
[9] |
D. Skvortsov, S. J. Lee, M. Y. Choi, and A. F. Vilesov, J. Phys. Chem. A 113, 7360 (2009). doi: 10.1021/jp811497c
|
[10] |
S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1, 2233 (2010). doi: 10.1021/jz100637m
|
[11] |
A. M. Morrison, S. D. Flynn, T. Liang, and G. E. Douberly, J. Phys. Chem. A 114, 8090 (2010). doi: 10.1021/jp104545j
|
[12] |
M. Letzner, S. Gruen, D. Habig, K. Hanke, T. Endres, P. Nieto, G. Schwaab, L. Walewski, M. Wollenhaupt, H. Forbert, D. Marx, and M. Havenith, J. Chem. Phys. 139, 154304 (2013). doi: 10.1063/1.4824858
|
[13] |
B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010). doi: 10.1021/jp102532m
|
[14] |
A. K. Samanta, L. C. Ch'ng, and H. Reisler, Chem. Phys. Lett. 575, 1 (2013). doi: 10.1016/j.cplett.2013.05.003
|
[15] |
M. J. Packer and D. C. Clary, J. Phys. Chem. 99, 14323 (1995). doi: 10.1021/j100039a020
|
[16] |
S. Re, Y. Osamura, Y. Suzuki, and H. F. Schaefer Ⅲ, J. Chem. Phys. 109, 973 (1998). doi: 10.1063/1.476640
|
[17] |
G. M. Chaban, R. B. Gerber, and K. C. Janda, J. Phys. Chem. A 105, 8323 (2001). doi: 10.1021/jp011567k
|
[18] |
M. E. Alikhani and B. Silvi, Phys. Chem. Chem. Phys. 5, 2494 (2003). doi: 10.1039/B301231J
|
[19] |
M. Masia, H. Forbert, and D. Marx, J. Phys. Chem. A 111, 12181 (2007). doi: 10.1021/jp0740494
|
[20] |
Y. Liu, J. Li, P. M. Felker, and Z. Bačić, Phys. Chem. Chem. Phys. 23, 7101 (2021). doi: 10.1039/D1CP00865J
|
[21] |
J. S. Mancini and J. M. Bowman, J. Chem. Phys. 138, 121102 (2013). doi: 10.1063/1.4799231
|
[22] |
B. Jiang, J. Li, and H. Guo, Int. Rev. Phys. Chem. 35, 479 (2016). doi: 10.1080/0144235X.2016.1200347
|
[23] |
B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013). doi: 10.1063/1.4817187
|
[24] |
J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013). doi: 10.1063/1.4832697
|
[25] |
P. M. Felker, Y. Liu, J. Li, and Z. Bačić, J. Phys. Chem. A 125, 6437 (2021). doi: 10.1021/acs.jpca.1c04662
|
[26] |
P. M. Felker and Z. Bačić, J. Chem. Phys. 153, 074107 (2020). doi: 10.1063/5.0020566
|
[27] |
P. M. Felker and Z. Bačić, J. Chem. Phys. 151, 024305 (2019). doi: 10.1063/1.5111131
|
[28] |
D. Lauvergnat, P. M. Felker, Y. Scribano, D. M. Benoit, and Z. Bačić, J. Chem. Phys. 150, 154303 (2019). doi: 10.1063/1.5090573
|
[29] |
P. M. Felker and Z. Bačić, J. Phys. Chem. A 125, 980 (2021). doi: 10.1021/acs.jpca.0c10320
|
[30] |
Z. Bačić and J. C. Light, J. Chem. Phys. 85, 4594 (1986). doi: 10.1063/1.451824
|
[31] |
Z. Bačić and J. C. Light, J. Chem. Phys. 86, 3065 (1987). doi: 10.1063/1.452017
|
[32] |
Z. Bačić, R. M. Whitnell, D. Brown, and J. C. Light, Comput. Phys. Commun. 51, 35 (1988). doi: 10.1016/0010-4655(88)90060-4
|
[33] |
Z. Bačić and J. C. Light, Annu. Rev. Phys. Chem. 40, 469 (1989). doi: 10.1146/annurev.pc.40.100189.002345
|
[34] |
D. H. Zhang, Q. Wu, J. Z. H. Zhang, M. von Dirke, and Z. Bačić, J. Chem. Phys. 102, 2315 (1995). doi: 10.1063/1.468719
|
[35] |
Y. Qiu and Z. Bačić, J. Chem. Phys. 106, 2158 (1997). doi: 10.1063/1.473139
|
[36] |
S. Carter and N. C. Handy, Comput. Phys. Commun. 51, 49 (1988). doi: 10.1016/0010-4655(88)90061-6
|
[37] |
X. G. Wang and T. Carrington Jr., J. Chem. Phys. 119, 101 (2003). doi: 10.1063/1.1574016
|
[38] |
X. G. Wang and T. Carrington Jr., J. Chem. Phys. 129, 234102 (2009).
|
[39] |
X. G. Wang and T. Carrington, J. Chem. Phys. 148, 074108 (2018). doi: 10.1063/1.5020426
|
[40] |
P. M. Felker, D. Lauvergnat, Y. Scribano, D. M. Benoit, and Z. Bačić, J. Chem. Phys. 151, 124311 (2019). doi: 10.1063/1.5124051
|
[41] |
P. M. Felker and Z. Bačić, J. Chem. Phys. 152, 014108 (2020). doi: 10.1063/1.5138992
|
[42] |
P. M. Felker and Z. Bačić, J. Chem. Phys. 152, 124103 (2020). doi: 10.1063/5.0002515
|
[43] |
G. Brocks, A. van der Avoird, B. T. Sutcliffe, and J. Tennyson, Molec. Phys. 50, 1025 (1983). doi: 10.1080/00268978300102831
|
[44] |
B. R. Johnson and W. P. Reinhardt, J. Chem. Phys. 85, 4538 (1986). doi: 10.1063/1.451775
|
[45] |
Z. Bačić, D. Watt, and J. C. Light, J. Chem. Phys. 89, 947 (1988). doi: 10.1063/1.455163
|
[46] |
B. T. Sutcliffe and J. Tennyson, Int. J. Quantum Chem. 39, 183 (1991). doi: 10.1002/qua.560390208
|
[47] |
X. G. Wang and T. Carrington, J. Chem. Phys. 146, 104105 (2017). doi: 10.1063/1.4977179
|
[48] |
X. G. Wang and T. Carrington Jr., J. Chem. Phys. 134, 044313 (2011). doi: 10.1063/1.3533230
|
[49] |
J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992). doi: 10.1016/0009-2614(92)85330-D
|
[50] |
H. Wei and T. Carrington Jr., J. Chem. Phys. 97, 3029 (1992). doi: 10.1063/1.463044
|
[51] |
A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc. 74, 1 (1979). doi: 10.1016/0022-2852(79)90019-5
|
[52] |
A. D. Buckingham, Proc. Roy. Soc. A 248, 169 (1958). http://www.onacademic.com/detail/journal_1000036421647110_181f.html
|
[53] |
A. D. Buckingham, Trans. Faraday Soc. 56, 753 (1960). doi: 10.1039/tf9605600753
|
1. | Bischoff, M.I., Voute, A., Mihrin, D. et al. Stepwise microsolvation of HCl revisited: Infrared investigation of selectively deuterated (HCl)m(H2O)n (m + n ≤ 4) cluster molecules. Journal of Chemical Physics, 2025, 162(10): 104303. DOI:10.1063/5.0245501 |
2. | Wang, X.-G., Carrington, T. Using an uncontracted inter-molecular basis to assess the convergence of contracted inter-molecular bases when computing the spectrum of H2O-CO. Molecular Physics, 2025. DOI:10.1080/00268976.2025.2466666 |
3. | Li, J., Vindel-Zandbergen, P., Li, J. et al. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. Journal of Physical Chemistry A, 2024, 128(45): 9707-9720. DOI:10.1021/acs.jpca.4c03771 |
4. | Simkó, I., Felker, P.M., Bačić, Z. HCl trimer: HCl-stretch excited intramolecular and intermolecular vibrational states from 12D fully coupled quantum calculations employing contracted intra- and inter-molecular bases. Journal of Chemical Physics, 2024, 160(16): 164304. DOI:10.1063/5.0207366 |
5. | Vindel-Zandbergen, P., Kȩdziera, D., Żółtowski, M. et al. H2O-HCN complex: A new potential energy surface and intermolecular rovibrational states from rigorous quantum calculations. Journal of Chemical Physics, 2023, 159(17): 174302. DOI:10.1063/5.0173751 |
6. | Tajouo Tela, H., Quintas-Sánchez, E., Dubernet, M.-L. et al. Rovibrational states calculations of the H2O-HCN heterodimer with the multiconfiguration time dependent Hartree method. Physical Chemistry Chemical Physics, 2023, 25(46): 31813-31824. DOI:10.1039/d3cp03225f |
7. | Felker, P.M., Bačić, Z. HF trimer: 12D fully coupled quantum calculations of HF-stretch excited intramolecular and intermolecular vibrational states using contracted bases of intramolecular and intermolecular eigenstates. Journal of Chemical Physics, 2023, 158(23): 234109. DOI:10.1063/5.0156976 |
8. | Wang, X.-G., Carrington, T. Computing excited OH stretch states of water dimer in 12D using contracted intermolecular and intramolecular basis functions. Journal of Chemical Physics, 2023, 158(8): 084107. DOI:10.1063/5.0139586 |
9. | Ma, H., Yang, Y., Jing, H. et al. Semi-Empirical model to retrieve finite temperature terahertz absorption spectra using Morse potential. Chinese Journal of Chemical Physics, 2023, 36(1): 15-24. DOI:10.1063/1674-0068/cjcp2202032 |
10. | Li, J., Liu, Y. Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-Dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions. Challenges and Advances in Computational Chemistry and Physics, 2023. DOI:10.1007/978-3-031-37196-7_6 |
11. | Felker, P.M., Bačić, Z. Intermolecular vibrational states of HF trimer from rigorous nine-dimensional quantum calculations: Strong coupling between intermolecular bending and stretching vibrations and the importance of the three-body interactions. Journal of Chemical Physics, 2022, 157(19): 194103. DOI:10.1063/5.0128550 |
12. | Felker, P.M., Bačić, Z. Noncovalently bound molecular complexes beyond diatom-diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Physical Chemistry Chemical Physics, 2022, 24(40): 24655-24676. DOI:10.1039/d2cp04005k |
13. | Felker, P.M., Bačić, Z. Intermolecular rovibrational states of the H2O-CO2and D2O-CO2van der Waals complexes. Journal of Chemical Physics, 2022, 156(6): 064301. DOI:10.1063/5.0083754 |
Tables(7)