Processing math: 100%

Advanced Search
Peter M. Felker, Zlatko Bačić. Intra- and Intermolecular Rovibrational States of HCl-H2O and DCl-H2O Dimers from Full-Dimensional and Fully Coupled Quantum Calculations[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 728-740. DOI: 10.1063/1674-0068/cjcp2110189
Citation: Peter M. Felker, Zlatko Bačić. Intra- and Intermolecular Rovibrational States of HCl-H2O and DCl-H2O Dimers from Full-Dimensional and Fully Coupled Quantum Calculations[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 728-740. DOI: 10.1063/1674-0068/cjcp2110189

Intra- and Intermolecular Rovibrational States of HCl-H2O and DCl-H2O Dimers from Full-Dimensional and Fully Coupled Quantum Calculations

More Information
  • Corresponding author:

    Peter M. Felker, E-mail: felker@chem.ucla.edu

    Bačić Zlatko, E-mail: zlatko.bacic@nyu.edu

  • Received Date: October 08, 2021
  • Accepted Date: October 30, 2021
  • Available Online: November 09, 2021
  • Issue Publish Date: December 26, 2021
  • We report full-dimensional and fully coupled quantum bound-state calculations of the J = 1 intra- and intermolecular rovibrational states of two isotopologues of the hydrogen chloride-water dimer, HCl-H2O (HH) and DCl-H2O (DH). The present study complements our recent theoretical investigations of the J = 0 nine-dimensional (9D) vibrational level structure of these and two other H/D isotopologues of this noncovalently bound molecular complex, and employs the same accurate 9D permutation invariant polynomial-neural network potential energy surface. The calculations yield all intramolecular vibrational fundamentals of the HH and DH dimers and the low-energy intermolecular rovibrational states in these intramolecular vibrational manifolds. The results are compared with those of the 9D J = 0 calculations of the same dimers. The energy differences between the K = 1 and K = 0 eigenstates exhibit pronounced variations with the intermolecular rovibrational states, for which a qualitative explanation is provided.
  • Part of Special Issue "John Z.H. Zhang Festschrift for celebrating his 60th birthday".

  • [1]
    A. K. Samanta, Y. Wang, J. S. Mancini, J. M. Bowman, and H. Reisler, Chem. Rev. 116, 4913 (2016). doi: 10.1021/acs.chemrev.5b00506
    [2]
    R. P. de Tudela and D. Marx, Phys. Rev. Lett. 119, 223001 (2017). doi: 10.1103/PhysRevLett.119.223001
    [3]
    A. C. Legon and L. C. Willoughby, Chem. Phys. Lett. 95, 449 (1983). doi: 10.1016/0009-2614(83)80592-2
    [4]
    Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon, and E. Steiner, J. Phys. Chem. A 104, 6970 (2000). doi: 10.1021/jp001156o
    [5]
    M. Weimann, M. Farnik, and M. A. Suhm, Phys. Chem. Chem. Phys. 4, 3933 (2002). doi: 10.1039/B204840J
    [6]
    M. Fárník, M. Weimann, and M. A. Suhm, J. Chem. Phys. 118, 10120 (2003). doi: 10.1063/1.1571525
    [7]
    A. J. Honeycutt, R. J. Strickland, F. Hellberg, and R. J. Saykally, J. Chem. Phys. 118, 1221 (2003). doi: 10.1063/1.1529177
    [8]
    M. Ortlieb, Ö. Birer, M. Letzner, G. D. Schwaab, and M. Havenith, J. Phys. Chem. A 111, 12192 (2007). doi: 10.1021/jp0759980
    [9]
    D. Skvortsov, S. J. Lee, M. Y. Choi, and A. F. Vilesov, J. Phys. Chem. A 113, 7360 (2009). doi: 10.1021/jp811497c
    [10]
    S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1, 2233 (2010). doi: 10.1021/jz100637m
    [11]
    A. M. Morrison, S. D. Flynn, T. Liang, and G. E. Douberly, J. Phys. Chem. A 114, 8090 (2010). doi: 10.1021/jp104545j
    [12]
    M. Letzner, S. Gruen, D. Habig, K. Hanke, T. Endres, P. Nieto, G. Schwaab, L. Walewski, M. Wollenhaupt, H. Forbert, D. Marx, and M. Havenith, J. Chem. Phys. 139, 154304 (2013). doi: 10.1063/1.4824858
    [13]
    B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010). doi: 10.1021/jp102532m
    [14]
    A. K. Samanta, L. C. Ch'ng, and H. Reisler, Chem. Phys. Lett. 575, 1 (2013). doi: 10.1016/j.cplett.2013.05.003
    [15]
    M. J. Packer and D. C. Clary, J. Phys. Chem. 99, 14323 (1995). doi: 10.1021/j100039a020
    [16]
    S. Re, Y. Osamura, Y. Suzuki, and H. F. Schaefer Ⅲ, J. Chem. Phys. 109, 973 (1998). doi: 10.1063/1.476640
    [17]
    G. M. Chaban, R. B. Gerber, and K. C. Janda, J. Phys. Chem. A 105, 8323 (2001). doi: 10.1021/jp011567k
    [18]
    M. E. Alikhani and B. Silvi, Phys. Chem. Chem. Phys. 5, 2494 (2003). doi: 10.1039/B301231J
    [19]
    M. Masia, H. Forbert, and D. Marx, J. Phys. Chem. A 111, 12181 (2007). doi: 10.1021/jp0740494
    [20]
    Y. Liu, J. Li, P. M. Felker, and Z. Bačić, Phys. Chem. Chem. Phys. 23, 7101 (2021). doi: 10.1039/D1CP00865J
    [21]
    J. S. Mancini and J. M. Bowman, J. Chem. Phys. 138, 121102 (2013). doi: 10.1063/1.4799231
    [22]
    B. Jiang, J. Li, and H. Guo, Int. Rev. Phys. Chem. 35, 479 (2016). doi: 10.1080/0144235X.2016.1200347
    [23]
    B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013). doi: 10.1063/1.4817187
    [24]
    J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013). doi: 10.1063/1.4832697
    [25]
    P. M. Felker, Y. Liu, J. Li, and Z. Bačić, J. Phys. Chem. A 125, 6437 (2021). doi: 10.1021/acs.jpca.1c04662
    [26]
    P. M. Felker and Z. Bačić, J. Chem. Phys. 153, 074107 (2020). doi: 10.1063/5.0020566
    [27]
    P. M. Felker and Z. Bačić, J. Chem. Phys. 151, 024305 (2019). doi: 10.1063/1.5111131
    [28]
    D. Lauvergnat, P. M. Felker, Y. Scribano, D. M. Benoit, and Z. Bačić, J. Chem. Phys. 150, 154303 (2019). doi: 10.1063/1.5090573
    [29]
    P. M. Felker and Z. Bačić, J. Phys. Chem. A 125, 980 (2021). doi: 10.1021/acs.jpca.0c10320
    [30]
    Z. Bačić and J. C. Light, J. Chem. Phys. 85, 4594 (1986). doi: 10.1063/1.451824
    [31]
    Z. Bačić and J. C. Light, J. Chem. Phys. 86, 3065 (1987). doi: 10.1063/1.452017
    [32]
    Z. Bačić, R. M. Whitnell, D. Brown, and J. C. Light, Comput. Phys. Commun. 51, 35 (1988). doi: 10.1016/0010-4655(88)90060-4
    [33]
    Z. Bačić and J. C. Light, Annu. Rev. Phys. Chem. 40, 469 (1989). doi: 10.1146/annurev.pc.40.100189.002345
    [34]
    D. H. Zhang, Q. Wu, J. Z. H. Zhang, M. von Dirke, and Z. Bačić, J. Chem. Phys. 102, 2315 (1995). doi: 10.1063/1.468719
    [35]
    Y. Qiu and Z. Bačić, J. Chem. Phys. 106, 2158 (1997). doi: 10.1063/1.473139
    [36]
    S. Carter and N. C. Handy, Comput. Phys. Commun. 51, 49 (1988). doi: 10.1016/0010-4655(88)90061-6
    [37]
    X. G. Wang and T. Carrington Jr., J. Chem. Phys. 119, 101 (2003). doi: 10.1063/1.1574016
    [38]
    X. G. Wang and T. Carrington Jr., J. Chem. Phys. 129, 234102 (2009).
    [39]
    X. G. Wang and T. Carrington, J. Chem. Phys. 148, 074108 (2018). doi: 10.1063/1.5020426
    [40]
    P. M. Felker, D. Lauvergnat, Y. Scribano, D. M. Benoit, and Z. Bačić, J. Chem. Phys. 151, 124311 (2019). doi: 10.1063/1.5124051
    [41]
    P. M. Felker and Z. Bačić, J. Chem. Phys. 152, 014108 (2020). doi: 10.1063/1.5138992
    [42]
    P. M. Felker and Z. Bačić, J. Chem. Phys. 152, 124103 (2020). doi: 10.1063/5.0002515
    [43]
    G. Brocks, A. van der Avoird, B. T. Sutcliffe, and J. Tennyson, Molec. Phys. 50, 1025 (1983). doi: 10.1080/00268978300102831
    [44]
    B. R. Johnson and W. P. Reinhardt, J. Chem. Phys. 85, 4538 (1986). doi: 10.1063/1.451775
    [45]
    Z. Bačić, D. Watt, and J. C. Light, J. Chem. Phys. 89, 947 (1988). doi: 10.1063/1.455163
    [46]
    B. T. Sutcliffe and J. Tennyson, Int. J. Quantum Chem. 39, 183 (1991). doi: 10.1002/qua.560390208
    [47]
    X. G. Wang and T. Carrington, J. Chem. Phys. 146, 104105 (2017). doi: 10.1063/1.4977179
    [48]
    X. G. Wang and T. Carrington Jr., J. Chem. Phys. 134, 044313 (2011). doi: 10.1063/1.3533230
    [49]
    J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992). doi: 10.1016/0009-2614(92)85330-D
    [50]
    H. Wei and T. Carrington Jr., J. Chem. Phys. 97, 3029 (1992). doi: 10.1063/1.463044
    [51]
    A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc. 74, 1 (1979). doi: 10.1016/0022-2852(79)90019-5
    [52]
    A. D. Buckingham, Proc. Roy. Soc. A 248, 169 (1958). http://www.onacademic.com/detail/journal_1000036421647110_181f.html
    [53]
    A. D. Buckingham, Trans. Faraday Soc. 56, 753 (1960). doi: 10.1039/tf9605600753
  • Cited by

    Periodical cited type(13)

    1. Bischoff, M.I., Voute, A., Mihrin, D. et al. Stepwise microsolvation of HCl revisited: Infrared investigation of selectively deuterated (HCl)m(H2O)n (m + n ≤ 4) cluster molecules. Journal of Chemical Physics, 2025, 162(10): 104303. DOI:10.1063/5.0245501
    2. Wang, X.-G., Carrington, T. Using an uncontracted inter-molecular basis to assess the convergence of contracted inter-molecular bases when computing the spectrum of H2O-CO. Molecular Physics, 2025. DOI:10.1080/00268976.2025.2466666
    3. Li, J., Vindel-Zandbergen, P., Li, J. et al. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. Journal of Physical Chemistry A, 2024, 128(45): 9707-9720. DOI:10.1021/acs.jpca.4c03771
    4. Simkó, I., Felker, P.M., Bačić, Z. HCl trimer: HCl-stretch excited intramolecular and intermolecular vibrational states from 12D fully coupled quantum calculations employing contracted intra- and inter-molecular bases. Journal of Chemical Physics, 2024, 160(16): 164304. DOI:10.1063/5.0207366
    5. Vindel-Zandbergen, P., Kȩdziera, D., Żółtowski, M. et al. H2O-HCN complex: A new potential energy surface and intermolecular rovibrational states from rigorous quantum calculations. Journal of Chemical Physics, 2023, 159(17): 174302. DOI:10.1063/5.0173751
    6. Tajouo Tela, H., Quintas-Sánchez, E., Dubernet, M.-L. et al. Rovibrational states calculations of the H2O-HCN heterodimer with the multiconfiguration time dependent Hartree method. Physical Chemistry Chemical Physics, 2023, 25(46): 31813-31824. DOI:10.1039/d3cp03225f
    7. Felker, P.M., Bačić, Z. HF trimer: 12D fully coupled quantum calculations of HF-stretch excited intramolecular and intermolecular vibrational states using contracted bases of intramolecular and intermolecular eigenstates. Journal of Chemical Physics, 2023, 158(23): 234109. DOI:10.1063/5.0156976
    8. Wang, X.-G., Carrington, T. Computing excited OH stretch states of water dimer in 12D using contracted intermolecular and intramolecular basis functions. Journal of Chemical Physics, 2023, 158(8): 084107. DOI:10.1063/5.0139586
    9. Ma, H., Yang, Y., Jing, H. et al. Semi-Empirical model to retrieve finite temperature terahertz absorption spectra using Morse potential. Chinese Journal of Chemical Physics, 2023, 36(1): 15-24. DOI:10.1063/1674-0068/cjcp2202032
    10. Li, J., Liu, Y. Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-Dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions. Challenges and Advances in Computational Chemistry and Physics, 2023. DOI:10.1007/978-3-031-37196-7_6
    11. Felker, P.M., Bačić, Z. Intermolecular vibrational states of HF trimer from rigorous nine-dimensional quantum calculations: Strong coupling between intermolecular bending and stretching vibrations and the importance of the three-body interactions. Journal of Chemical Physics, 2022, 157(19): 194103. DOI:10.1063/5.0128550
    12. Felker, P.M., Bačić, Z. Noncovalently bound molecular complexes beyond diatom-diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Physical Chemistry Chemical Physics, 2022, 24(40): 24655-24676. DOI:10.1039/d2cp04005k
    13. Felker, P.M., Bačić, Z. Intermolecular rovibrational states of the H2O-CO2and D2O-CO2van der Waals complexes. Journal of Chemical Physics, 2022, 156(6): 064301. DOI:10.1063/5.0083754

    Other cited types(0)

Catalog

    Tables(7)

    Article Metrics

    Article views (544) PDF downloads (32) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return