Citation: | Guo-dong Wang, Zhi-xing Liu, Bei-bei Qiu, Zhi-guo Zhang, Rui Wang, Xiao-yong Wang, Jing Ma, Yong-fang Li, Min Xiao, Chun-feng Zhang. Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 751-760. DOI: 10.1063/1674-0068/cjcp2109179 |
†Part of Special Issue "John Z.H. Zhang Festschrift for celebrating his 60th birthday".
[1] |
G. Li, R. Zhu, and Y. Yang, Polymer Solar Cells Nat. Photon. 6, 153 (2012). doi: 10.1038/nphoton.2012.11
|
[2] |
Y. Huang, E. J. Kramer, A. J. Heeger, Bazan, and G. C. Bulk, Chem. Rev. 114, 7006 (2014). doi: 10.1021/cr400353v
|
[3] |
L. Y. Lu, T. Y. Zheng, Q. H. Wu, A. M. Schneider, D. L. Zhao, and L. P. Yu, Chem. Rev. 115, 12666 (2015). doi: 10.1021/acs.chemrev.5b00098
|
[4] |
P. Cheng, G. Li, X. W. Zhan, and Y. Yang, Nat. Photon. 12, 131 (2018). doi: 10.1038/s41566-018-0104-9
|
[5] |
G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, Chem. Rev. 117, 796 (2017). doi: 10.1021/acs.chemrev.6b00215
|
[6] |
O. Inganaes, Adv. Mater. 30, 1800388 (2018). doi: 10.1002/adma.201800388
|
[7] |
C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, and X. Zhan, Nat. Rev. Mater. 3, 18003 (2018). doi: 10.1038/natrevmats.2018.3
|
[8] |
A. Karki, A. J. Gillett, R. H. Friend, and T. Q. Nguyen, Adv. Energy Mater. 11, 2003441 (2021). doi: 10.1002/aenm.202003441
|
[9] |
J. Hou, O. Inganas, R. H. Friend, and F. Gao, Nat. Mater. 17, 119 (2018). doi: 10.1038/nmat5063
|
[10] |
G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Chem. Rev. 118, 3447 (2018). doi: 10.1021/acs.chemrev.7b00535
|
[11] |
Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. Heeger, Nat. Mater. 11, 44 (2012). doi: 10.1038/nmat3160
|
[12] |
A. Mishra and P. Baeuerle, Angew. Chem. Int. Ed. 51, 2020 (2012). doi: 10.1002/anie.201102326
|
[13] |
Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell, and Y. Chen, Nat. Photon. 9, 35 (2015). doi: 10.1038/nphoton.2014.269
|
[14] |
L. Yang, S. Zhang, C. He, J. Zhang, H. Yao, Y. Yang, Y. Zhang, W. Zhao, and J. Hou, J. Am. Chem. Soc. 139, 1958 (2017). doi: 10.1021/jacs.6b11612
|
[15] |
Y. Huo, X. T. Gong, T. K. Lau, T. Xiao, C. Yan, X. Lu, G. Lu, X. Zhan, and H. L. Zhang, Chem. Mater. 30, 8661 (2018). doi: 10.1021/acs.chemmater.8b03980
|
[16] |
R. Zhou, Z. Jiang, C. Yang, J. Yu, J. Feng, M. A. Adil, D. Deng, W. Zou, J. Zhang, K. Lu, W. Ma, F. Gao, and Z. Wei, Nat. Commun. 10, 5393 (2019). doi: 10.1038/s41467-019-13292-1
|
[17] |
K. Gao, S. B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, and A. K. Y. Jen, Adv. Mater. 31, 1807842 (2019). doi: 10.1002/adma.201807842
|
[18] |
J. Gao, J. Ge, R. Peng, C. Liu, L. Cao, D. Zhang, B. Fanady, L. Hong, E. Zhou, and Z. Ge, J. Mater. Chem. A 8, 7405 (2020). doi: 10.1039/D0TA01893G
|
[19] |
D. Hu, Q. Yang, H. Chen, F. Wobben, V. M. Le Corre, R. Singh, T. Liu, R. Ma, H. Tang, L. J. A. Koster, T. Duan, H. Yan, Z. Kan, Z. Xiao, and S. Lu, Energy Environ. Sci. 13, 2134 (2020). doi: 10.1039/D0EE00714E
|
[20] |
J. Qin, C. An, J. Zhang, K. Ma, Y. Yang, T. Zhang, S. Li, K. Xian, Y. Cui, Y. Tang, W. Ma, H. Yao, S. Zhang, B. Xu, C. He, and J. Hou, Sci. China Mater. 63, 1142 (2020). doi: 10.1007/s40843-020-1269-9
|
[21] |
Y. Huo, H. L. Zhang, and X. Zhan, ACS Energy Lett. 4, 1241 (2019). doi: 10.1021/acsenergylett.9b00528
|
[22] |
Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, Adv. Mater. 32, 1908205 (2020). doi: 10.1002/adma.201908205
|
[23] |
Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, Sci. Bull. 65, 272 (2020). doi: 10.1016/j.scib.2020.01.001
|
[24] |
T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010). doi: 10.1021/cr900271s
|
[25] |
A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, Science 335, 1340 (2012). doi: 10.1126/science.1217745
|
[26] |
S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, Science 344, 1001 (2014). doi: 10.1126/science.1249771
|
[27] |
S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Science 343, 512 (2014).
|
[28] |
A. C. Jakowetz, M. L. Bohm, J. Zhang, A. Sadhanala, S. Huettner, A. A. Bakulin, A. Rao, and R. H. Friend, J. Am. Chem. Soc. 138, 11672 (2016). doi: 10.1021/jacs.6b05131
|
[29] |
D. M. Stoltzfus, J. E. Donaghey, A. Armin, P. E. Shaw, P. L. Burn, and P. Meredith, Chem. Rev. 116, 12920 (2016). doi: 10.1021/acs.chemrev.6b00126
|
[30] |
T. F. Hinrichsen, C. C. S. Chan, C. Ma, D. Palecek, A. Gillett, S. Chen, X. Zou, G. Zhang, H. L. Yip, K. S. Wong, R. H. Friend, H. Yan, A. Rao, and P. C. Y. Chow, Nat. Commun. 11, 5617 (2020). doi: 10.1038/s41467-020-19332-5
|
[31] |
A. Karki, J. Vollbrecht, A. J. Gillett, S. S. Xiao, Y. Yang, Z. Peng, N. Schopp, A. L. Dixon, S. Yoon, M. Schrock, H. Ade, G. N. M. Reddy, R. H. Friend, and T. Q. Nguyen, Energy Environ. Sci. 13, 3679 (2020). doi: 10.1039/D0EE01896A
|
[32] |
A. Karki, J. Vollbrecht, A. J. Gillett, P. Selter, J. Lee, Z. Peng, N. Schopp, A. L. Dixon, M. Schrock, V. Nadazdy, F. Schauer, H. Ade, B. F. Chmelka, G. C. Bazan, R. H. Friend, and T. Q. Nguyen, Adv. Energy Mater. 10, 2001203 (2020). doi: 10.1002/aenm.202001203
|
[33] |
M. Saladina, P. S. Marques, A. Markina, S. Karuthedath, C. Wopke, C. Gohler, Y. Chen, M. Allain, P. Blanchard, C. Cabanetos, D. Andrienko, F. Laquai, J. Gorenflot, and C. Deibel, Adv. Funct. Mater. 31, 2007479 (2021). doi: 10.1002/adfm.202007479
|
[34] |
O. G. Reid, R. D. Pensack, Y. Song, G. D. Scholes, and G. Rumbles, Chem. Mater. 26, 561 (2014). doi: 10.1021/cm4027144
|
[35] |
S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994). doi: 10.1126/science.265.5173.765
|
[36] |
B. S. Rolczynski, J. M. Szarko, H. J. Son, Y. Liang, L. Yu, and L. X. Chen, J. Am. Chem. Soc. 134, 4142 (2012). doi: 10.1021/ja209003y
|
[37] |
D. Di Nuzzo, D. Viola, F. S. U. Fischer, G. Cerullo, S. Ludwigs, and E. Da Como, J. Phys. Chem. Lett. 6, 1196 (2015). doi: 10.1021/acs.jpclett.5b00218
|
[38] |
R. Wang, Y. Yao, C. Zhang, Y. Zhang, H. Bin, L. Xue, Z. G. Zhang, X. Xie, H. Ma, X. Wang, Y. Li, and M. Xiao, Nat. Commun. 10, 398 (2019). doi: 10.1038/s41467-019-08361-4
|
[39] |
A. De Sio, F. Troiani, M. Maiuri, J. Rehault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, Nat. Commun. 7, 13742 (2016). doi: 10.1038/ncomms13742
|
[40] |
R. Tautz, E. Da Como, C. Wiebeler, G. Soavi, I. Dumsch, N. Froehlich, G. Grancini, S. Allard, U. Scherf, G. Cerullo, S. Schumacher, and J. Feldmann, J. Am. Chem. Soc. 135, 4282 (2013). doi: 10.1021/ja309252a
|
[41] |
R. Tautz, E. Da Como, T. Limmer, J. Feldmann, H. J. Egelhaaf, E. von Hauff, V. Lemaur, D. Beljonne, S. Yilmaz, I. Dumsch, S. Allard, and U. Scherf, Nat. Commun. 3, 970 (2012). doi: 10.1038/ncomms1967
|
[42] |
R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang, and M. Xiao, J. Am. Chem. Soc. 142, 12751 (2020). doi: 10.1021/jacs.0c04890
|
[43] |
Q. Guo, Q. Guo, Y. Geng, A. Tang, M. Zhang, M. Du, X. Sun, and E. Zhou, Mater. Chem. Front. 5, 3257 (2021). doi: 10.1039/D1QM00060H
|
[44] |
G. Zhang, X. K. Chen, J. Xiao, P. C. Y. Chow, M. Ren, G. Kupgan, X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, J. Yuan, Y. Zhang, S. Zhang, Y. Liu, Y. Zou, H. Yan, K. S. Wong, V. Coropceanu, N. Li, C. J. Brabec, J. L. Bredas, H. L. Yip, and Y. Cao, Nat. Commun. 11, 3943 (2020). doi: 10.1038/s41467-020-17867-1
|
[45] |
H. Bin, Y. Yang, Z. G. Zhang, L. Ye, M. Ghasem, S. Chen, Y. Zhang, C. Zhang, C. Sun, L. Xue, C. Yang, H. Ade, and Y. Li, J. Am. Chem. Soc. 139, 5085 (2017). doi: 10.1021/jacs.6b12826
|
[46] |
Z. Zhou, S. Xu, J. Song, Y. Jin, Q. Yue, Y. Qian, F. Liu, F. Zhang, and X. Zhu, Nat. Energy 3, 952 (2018). doi: 10.1038/s41560-018-0234-9
|
[47] |
B. Qiu, Z. Chen, S. Qin, J. Yao, W. Huang, L. Meng, H. Zhu, Y. Yang, Z. G. Zhang, and Y. Li, Adv. Mater. 32, 1908373 (2020). doi: 10.1002/adma.201908373
|
[48] |
Y. Wang, Y. Wang, B. Kan, X. Ke, X. Wan, C. Li, and Y. Chen, Adv. Energy Mater. 8, 1802021 (2018). doi: 10.1002/aenm.201802021
|
[49] |
S. Athanasopoulos, H. Baessler, and A. Koehler, J. Phys. Chem. Lett. 10, 7107 (2019). doi: 10.1021/acs.jpclett.9b02866
|
[50] |
K. H. Park, W. Kim, J. Yang, and D. Kim, Chem. Soc. Rev. 47, 4279 (2018). doi: 10.1039/C7CS00605E
|
[51] |
J. Shi, A. Isakova, A. Abudulimu, M. van den Berg, O. K. Kwon, A. J. Meixner, S. Y. Park, D. Zhang, J. Gierschner, and L. Luer, Energy Environ. Sci. 11, 211 (2018). doi: 10.1039/C7EE02967E
|
[52] |
B. Qiu, L. Xue, Y. Yang, H. Bin, Y. Zhang, C. Zhang, M. Xiao, K. Park, W. Morrison, Z. G. Zhang, and Y. Li, Chem. Mater. 29, 7543 (2017). doi: 10.1021/acs.chemmater.7b02536
|
[53] |
S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, Chem. Mater. 23, 3805 (2011). doi: 10.1021/cm201424a
|
[54] |
G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma, and Z. Y. Wang, Chem. Mater. 20, 6208 (2008). doi: 10.1021/cm801911n
|
[55] |
S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, and Y. Wang, Angew. Chem. Int. Ed. 127, 13260 (2015). doi: 10.1002/ange.201506687
|
[56] |
L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, and Y. Ma, Angew. Chem. Int. Ed. 53, 2119 (2014). doi: 10.1002/anie.201308486
|
[57] |
H. Tamura and I. Burghardt, J. Am. Chem. Soc. 135, 16364 (2013). doi: 10.1021/ja4093874
|
[58] |
N. J. Hestand and F. C. Spano, Chem. Rev. 118, 7069 (2018). doi: 10.1021/acs.chemrev.7b00581
|
[59] |
J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, and M. F. Toney, Chem. Rev. 112, 5488 (2012). doi: 10.1021/cr3001109
|
[60] |
G. A. DiLabio and E. R. Johnson, J. Am. Chem. Soc. 129, 6199 (2007). doi: 10.1021/ja068090g
|
[61] |
S. Grimme, Angew. Chem. Int. Ed. 47, 3430 (2008). doi: 10.1002/anie.200705157
|
[62] |
A. Distler, P. Kutka, T. Sauermann, H. J. Egelhaaf, D. M. Guldi, D. Di Nuzzo, S. C. J. Meskers, and R. A. J. Janssen, Chem. Mater. 24, 4397 (2012). doi: 10.1021/cm302623p
|
[63] |
C. W. Schlenker, K. S. Chen, H. L. Yip, C. Z. Li, L. R. Bradshaw, S. T. Ochsenbein, F. Z. Ding, X. S. S. Li, D. R. Gamelin, A. K. Y. Jen, and D. S. Ginger, J. Am. Chem. Soc. 134, 19661 (2012). doi: 10.1021/ja306110b
|
[64] |
D. Baran, N. Gasparini, A. Wadsworth, C. H. Tan, N. Wehbe, X. Song, Z. Hamid, W. Zhang, M. Neophytou, T. Kirchartz, C. J. Brabec, J. R. Durrant, and I. McCulloch, Nat. Commun. 9, 2059 (2018). doi: 10.1038/s41467-018-04502-3
|
[65] |
A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Energy Mater. 4, 1301469 (2014). doi: 10.1002/aenm.201301469
|
[66] |
M. Morana, H. Azimi, G. Dennler, H. J. Egelhaaf, M. Scharber, K. Forberich, J. Hauch, R. Gaudiana, D. Waller, Z. H. Zhu, K. Hingerl, S. S. van Bavel, J. Loos, and C. J. Brabec, Adv. Funct. Mater. 20, 1180 (2010). doi: 10.1002/adfm.200900931
|
[67] |
F. Etzold, I. A. Howard, N. Forler, D. M. Cho, M. Meister, H. Mangold, J. Shu, M. R. Hansen, K. Muellen, and F. Laquai, J. Am. Chem. Soc. 134, 10569 (2012). doi: 10.1021/ja303154g
|
[68] |
Z. Guo, D. Lee, R. D. Schaller, X. Zuo, B. Lee, T. Luo, H. Gao, and L. Huang, J. Am. Chem. Soc. 136, 10024 (2014). doi: 10.1021/ja503465s
|
[69] |
G. Li, X. Zhang, L. O. Jones, J. M. Alzola, S. Mukherjee, L. W. Feng, W. Zhu, C. L. Stern, W. Huang, J. Yu, V. K. Sangwan, D. M. DeLongchamp, K. L. Kohlstedt, M. R. Wasielewski, M. C. Hersam, G. C. Schatz, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 143, 6123 (2021). doi: 10.1021/jacs.1c00211
|
[70] |
G. Jia, S. Zhang, L. Yang, C. He, H. Fan, and J. Hou, Acta Phys. Chim. Sin. 35, 76 (2019). doi: 10.3866/PKU.WHXB201712063
|
1. | He, S.-S., He, T.-T., Zhou, Z.-J. et al. High Energy Density and Power Density Electrodes Prepared by Conductive Conjugated Polymers and Carbon Cloth | [导电共轭聚合物与碳布复合制备高能量密度和功率密度电极]. Acta Polymerica Sinica, 2024, 55(8): 1044-1058. DOI:10.11777/j.issn1000-3304.2024.24007 | |
2. | Wang, X., Guo, H., Kang, D. et al. Exploring the effect of electric field on charge-transfer states at non-fullerene D/A interface. Journal of Molecular Liquids, 2023. DOI:10.1016/j.molliq.2023.122962 | |
3. | Sun, X., Lv, J., Zhang, C. et al. Morphology Controlling of All-Small-Molecule Organic Solar Cells: From Donor Material Design to Device Engineering. Solar RRL, 2023, 7(16): 2300332. DOI:10.1002/solr.202300332 | |
4. | Chen, Z., He, C., Ran, P. et al. Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells. Energy and Environmental Science, 2023, 16(8): 3373-3380. DOI:10.1039/d3ee00602f | |
5. | Li, Q., Wang, R., Zhang, C. The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors. Journal of Physical Chemistry Letters, 2023, 14(12): 3031-3038. DOI:10.1021/acs.jpclett.2c03911 | |
6. | Liu, Z., Liu, Z., Wang, R. et al. Intersystem Crossing in Acceptor-Donor-Acceptor Type Organic Photovoltaic Molecules Promoted by Symmetry Breaking in Polar Environments. Journal of Physical Chemistry Letters, 2022, 13(44): 10305-10311. DOI:10.1021/acs.jpclett.2c03020 | |
7. | Li, X., Qi, J., Zhu, J. et al. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. Journal of Physical Chemistry Letters, 2022, 13(39): 9177-9185. DOI:10.1021/acs.jpclett.2c02666 |