Processing math: 100%

Advanced Search
Guo-dong Wang, Zhi-xing Liu, Bei-bei Qiu, Zhi-guo Zhang, Rui Wang, Xiao-yong Wang, Jing Ma, Yong-fang Li, Min Xiao, Chun-feng Zhang. Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 751-760. DOI: 10.1063/1674-0068/cjcp2109179
Citation: Guo-dong Wang, Zhi-xing Liu, Bei-bei Qiu, Zhi-guo Zhang, Rui Wang, Xiao-yong Wang, Jing Ma, Yong-fang Li, Min Xiao, Chun-feng Zhang. Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 751-760. DOI: 10.1063/1674-0068/cjcp2109179

Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors

More Information
  • Corresponding author:

    Chun-feng Zhang, E-mail: cfzhang@nju.edu.cn

  • Received Date: September 29, 2021
  • Accepted Date: October 11, 2021
  • Available Online: October 18, 2021
  • Issue Publish Date: December 26, 2021
  • Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells. However, the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored. Here, we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors. The delocalized excitations, arising from intermolecular interaction in the moiety of cyano-substituted donor, undergo ultrafast electron transfer with a lifetime of 3 ps in the blend. In contrast, some locally excited states, surviving in the film of donor without cyano substitution, are not actively involved in the charge separation. These findings well explain the performance improvement of devices with cyanided donors, suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.
  • Part of Special Issue "John Z.H. Zhang Festschrift for celebrating his 60th birthday".

  • [1]
    G. Li, R. Zhu, and Y. Yang, Polymer Solar Cells Nat. Photon. 6, 153 (2012). doi: 10.1038/nphoton.2012.11
    [2]
    Y. Huang, E. J. Kramer, A. J. Heeger, Bazan, and G. C. Bulk, Chem. Rev. 114, 7006 (2014). doi: 10.1021/cr400353v
    [3]
    L. Y. Lu, T. Y. Zheng, Q. H. Wu, A. M. Schneider, D. L. Zhao, and L. P. Yu, Chem. Rev. 115, 12666 (2015). doi: 10.1021/acs.chemrev.5b00098
    [4]
    P. Cheng, G. Li, X. W. Zhan, and Y. Yang, Nat. Photon. 12, 131 (2018). doi: 10.1038/s41566-018-0104-9
    [5]
    G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, Chem. Rev. 117, 796 (2017). doi: 10.1021/acs.chemrev.6b00215
    [6]
    O. Inganaes, Adv. Mater. 30, 1800388 (2018). doi: 10.1002/adma.201800388
    [7]
    C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, and X. Zhan, Nat. Rev. Mater. 3, 18003 (2018). doi: 10.1038/natrevmats.2018.3
    [8]
    A. Karki, A. J. Gillett, R. H. Friend, and T. Q. Nguyen, Adv. Energy Mater. 11, 2003441 (2021). doi: 10.1002/aenm.202003441
    [9]
    J. Hou, O. Inganas, R. H. Friend, and F. Gao, Nat. Mater. 17, 119 (2018). doi: 10.1038/nmat5063
    [10]
    G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Chem. Rev. 118, 3447 (2018). doi: 10.1021/acs.chemrev.7b00535
    [11]
    Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. Heeger, Nat. Mater. 11, 44 (2012). doi: 10.1038/nmat3160
    [12]
    A. Mishra and P. Baeuerle, Angew. Chem. Int. Ed. 51, 2020 (2012). doi: 10.1002/anie.201102326
    [13]
    Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell, and Y. Chen, Nat. Photon. 9, 35 (2015). doi: 10.1038/nphoton.2014.269
    [14]
    L. Yang, S. Zhang, C. He, J. Zhang, H. Yao, Y. Yang, Y. Zhang, W. Zhao, and J. Hou, J. Am. Chem. Soc. 139, 1958 (2017). doi: 10.1021/jacs.6b11612
    [15]
    Y. Huo, X. T. Gong, T. K. Lau, T. Xiao, C. Yan, X. Lu, G. Lu, X. Zhan, and H. L. Zhang, Chem. Mater. 30, 8661 (2018). doi: 10.1021/acs.chemmater.8b03980
    [16]
    R. Zhou, Z. Jiang, C. Yang, J. Yu, J. Feng, M. A. Adil, D. Deng, W. Zou, J. Zhang, K. Lu, W. Ma, F. Gao, and Z. Wei, Nat. Commun. 10, 5393 (2019). doi: 10.1038/s41467-019-13292-1
    [17]
    K. Gao, S. B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, and A. K. Y. Jen, Adv. Mater. 31, 1807842 (2019). doi: 10.1002/adma.201807842
    [18]
    J. Gao, J. Ge, R. Peng, C. Liu, L. Cao, D. Zhang, B. Fanady, L. Hong, E. Zhou, and Z. Ge, J. Mater. Chem. A 8, 7405 (2020). doi: 10.1039/D0TA01893G
    [19]
    D. Hu, Q. Yang, H. Chen, F. Wobben, V. M. Le Corre, R. Singh, T. Liu, R. Ma, H. Tang, L. J. A. Koster, T. Duan, H. Yan, Z. Kan, Z. Xiao, and S. Lu, Energy Environ. Sci. 13, 2134 (2020). doi: 10.1039/D0EE00714E
    [20]
    J. Qin, C. An, J. Zhang, K. Ma, Y. Yang, T. Zhang, S. Li, K. Xian, Y. Cui, Y. Tang, W. Ma, H. Yao, S. Zhang, B. Xu, C. He, and J. Hou, Sci. China Mater. 63, 1142 (2020). doi: 10.1007/s40843-020-1269-9
    [21]
    Y. Huo, H. L. Zhang, and X. Zhan, ACS Energy Lett. 4, 1241 (2019). doi: 10.1021/acsenergylett.9b00528
    [22]
    Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, Adv. Mater. 32, 1908205 (2020). doi: 10.1002/adma.201908205
    [23]
    Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, Sci. Bull. 65, 272 (2020). doi: 10.1016/j.scib.2020.01.001
    [24]
    T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010). doi: 10.1021/cr900271s
    [25]
    A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, Science 335, 1340 (2012). doi: 10.1126/science.1217745
    [26]
    S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, Science 344, 1001 (2014). doi: 10.1126/science.1249771
    [27]
    S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Science 343, 512 (2014).
    [28]
    A. C. Jakowetz, M. L. Bohm, J. Zhang, A. Sadhanala, S. Huettner, A. A. Bakulin, A. Rao, and R. H. Friend, J. Am. Chem. Soc. 138, 11672 (2016). doi: 10.1021/jacs.6b05131
    [29]
    D. M. Stoltzfus, J. E. Donaghey, A. Armin, P. E. Shaw, P. L. Burn, and P. Meredith, Chem. Rev. 116, 12920 (2016). doi: 10.1021/acs.chemrev.6b00126
    [30]
    T. F. Hinrichsen, C. C. S. Chan, C. Ma, D. Palecek, A. Gillett, S. Chen, X. Zou, G. Zhang, H. L. Yip, K. S. Wong, R. H. Friend, H. Yan, A. Rao, and P. C. Y. Chow, Nat. Commun. 11, 5617 (2020). doi: 10.1038/s41467-020-19332-5
    [31]
    A. Karki, J. Vollbrecht, A. J. Gillett, S. S. Xiao, Y. Yang, Z. Peng, N. Schopp, A. L. Dixon, S. Yoon, M. Schrock, H. Ade, G. N. M. Reddy, R. H. Friend, and T. Q. Nguyen, Energy Environ. Sci. 13, 3679 (2020). doi: 10.1039/D0EE01896A
    [32]
    A. Karki, J. Vollbrecht, A. J. Gillett, P. Selter, J. Lee, Z. Peng, N. Schopp, A. L. Dixon, M. Schrock, V. Nadazdy, F. Schauer, H. Ade, B. F. Chmelka, G. C. Bazan, R. H. Friend, and T. Q. Nguyen, Adv. Energy Mater. 10, 2001203 (2020). doi: 10.1002/aenm.202001203
    [33]
    M. Saladina, P. S. Marques, A. Markina, S. Karuthedath, C. Wopke, C. Gohler, Y. Chen, M. Allain, P. Blanchard, C. Cabanetos, D. Andrienko, F. Laquai, J. Gorenflot, and C. Deibel, Adv. Funct. Mater. 31, 2007479 (2021). doi: 10.1002/adfm.202007479
    [34]
    O. G. Reid, R. D. Pensack, Y. Song, G. D. Scholes, and G. Rumbles, Chem. Mater. 26, 561 (2014). doi: 10.1021/cm4027144
    [35]
    S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994). doi: 10.1126/science.265.5173.765
    [36]
    B. S. Rolczynski, J. M. Szarko, H. J. Son, Y. Liang, L. Yu, and L. X. Chen, J. Am. Chem. Soc. 134, 4142 (2012). doi: 10.1021/ja209003y
    [37]
    D. Di Nuzzo, D. Viola, F. S. U. Fischer, G. Cerullo, S. Ludwigs, and E. Da Como, J. Phys. Chem. Lett. 6, 1196 (2015). doi: 10.1021/acs.jpclett.5b00218
    [38]
    R. Wang, Y. Yao, C. Zhang, Y. Zhang, H. Bin, L. Xue, Z. G. Zhang, X. Xie, H. Ma, X. Wang, Y. Li, and M. Xiao, Nat. Commun. 10, 398 (2019). doi: 10.1038/s41467-019-08361-4
    [39]
    A. De Sio, F. Troiani, M. Maiuri, J. Rehault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, Nat. Commun. 7, 13742 (2016). doi: 10.1038/ncomms13742
    [40]
    R. Tautz, E. Da Como, C. Wiebeler, G. Soavi, I. Dumsch, N. Froehlich, G. Grancini, S. Allard, U. Scherf, G. Cerullo, S. Schumacher, and J. Feldmann, J. Am. Chem. Soc. 135, 4282 (2013). doi: 10.1021/ja309252a
    [41]
    R. Tautz, E. Da Como, T. Limmer, J. Feldmann, H. J. Egelhaaf, E. von Hauff, V. Lemaur, D. Beljonne, S. Yilmaz, I. Dumsch, S. Allard, and U. Scherf, Nat. Commun. 3, 970 (2012). doi: 10.1038/ncomms1967
    [42]
    R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang, and M. Xiao, J. Am. Chem. Soc. 142, 12751 (2020). doi: 10.1021/jacs.0c04890
    [43]
    Q. Guo, Q. Guo, Y. Geng, A. Tang, M. Zhang, M. Du, X. Sun, and E. Zhou, Mater. Chem. Front. 5, 3257 (2021). doi: 10.1039/D1QM00060H
    [44]
    G. Zhang, X. K. Chen, J. Xiao, P. C. Y. Chow, M. Ren, G. Kupgan, X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, J. Yuan, Y. Zhang, S. Zhang, Y. Liu, Y. Zou, H. Yan, K. S. Wong, V. Coropceanu, N. Li, C. J. Brabec, J. L. Bredas, H. L. Yip, and Y. Cao, Nat. Commun. 11, 3943 (2020). doi: 10.1038/s41467-020-17867-1
    [45]
    H. Bin, Y. Yang, Z. G. Zhang, L. Ye, M. Ghasem, S. Chen, Y. Zhang, C. Zhang, C. Sun, L. Xue, C. Yang, H. Ade, and Y. Li, J. Am. Chem. Soc. 139, 5085 (2017). doi: 10.1021/jacs.6b12826
    [46]
    Z. Zhou, S. Xu, J. Song, Y. Jin, Q. Yue, Y. Qian, F. Liu, F. Zhang, and X. Zhu, Nat. Energy 3, 952 (2018). doi: 10.1038/s41560-018-0234-9
    [47]
    B. Qiu, Z. Chen, S. Qin, J. Yao, W. Huang, L. Meng, H. Zhu, Y. Yang, Z. G. Zhang, and Y. Li, Adv. Mater. 32, 1908373 (2020). doi: 10.1002/adma.201908373
    [48]
    Y. Wang, Y. Wang, B. Kan, X. Ke, X. Wan, C. Li, and Y. Chen, Adv. Energy Mater. 8, 1802021 (2018). doi: 10.1002/aenm.201802021
    [49]
    S. Athanasopoulos, H. Baessler, and A. Koehler, J. Phys. Chem. Lett. 10, 7107 (2019). doi: 10.1021/acs.jpclett.9b02866
    [50]
    K. H. Park, W. Kim, J. Yang, and D. Kim, Chem. Soc. Rev. 47, 4279 (2018). doi: 10.1039/C7CS00605E
    [51]
    J. Shi, A. Isakova, A. Abudulimu, M. van den Berg, O. K. Kwon, A. J. Meixner, S. Y. Park, D. Zhang, J. Gierschner, and L. Luer, Energy Environ. Sci. 11, 211 (2018). doi: 10.1039/C7EE02967E
    [52]
    B. Qiu, L. Xue, Y. Yang, H. Bin, Y. Zhang, C. Zhang, M. Xiao, K. Park, W. Morrison, Z. G. Zhang, and Y. Li, Chem. Mater. 29, 7543 (2017). doi: 10.1021/acs.chemmater.7b02536
    [53]
    S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, Chem. Mater. 23, 3805 (2011). doi: 10.1021/cm201424a
    [54]
    G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma, and Z. Y. Wang, Chem. Mater. 20, 6208 (2008). doi: 10.1021/cm801911n
    [55]
    S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, and Y. Wang, Angew. Chem. Int. Ed. 127, 13260 (2015). doi: 10.1002/ange.201506687
    [56]
    L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, and Y. Ma, Angew. Chem. Int. Ed. 53, 2119 (2014). doi: 10.1002/anie.201308486
    [57]
    H. Tamura and I. Burghardt, J. Am. Chem. Soc. 135, 16364 (2013). doi: 10.1021/ja4093874
    [58]
    N. J. Hestand and F. C. Spano, Chem. Rev. 118, 7069 (2018). doi: 10.1021/acs.chemrev.7b00581
    [59]
    J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, and M. F. Toney, Chem. Rev. 112, 5488 (2012). doi: 10.1021/cr3001109
    [60]
    G. A. DiLabio and E. R. Johnson, J. Am. Chem. Soc. 129, 6199 (2007). doi: 10.1021/ja068090g
    [61]
    S. Grimme, Angew. Chem. Int. Ed. 47, 3430 (2008). doi: 10.1002/anie.200705157
    [62]
    A. Distler, P. Kutka, T. Sauermann, H. J. Egelhaaf, D. M. Guldi, D. Di Nuzzo, S. C. J. Meskers, and R. A. J. Janssen, Chem. Mater. 24, 4397 (2012). doi: 10.1021/cm302623p
    [63]
    C. W. Schlenker, K. S. Chen, H. L. Yip, C. Z. Li, L. R. Bradshaw, S. T. Ochsenbein, F. Z. Ding, X. S. S. Li, D. R. Gamelin, A. K. Y. Jen, and D. S. Ginger, J. Am. Chem. Soc. 134, 19661 (2012). doi: 10.1021/ja306110b
    [64]
    D. Baran, N. Gasparini, A. Wadsworth, C. H. Tan, N. Wehbe, X. Song, Z. Hamid, W. Zhang, M. Neophytou, T. Kirchartz, C. J. Brabec, J. R. Durrant, and I. McCulloch, Nat. Commun. 9, 2059 (2018). doi: 10.1038/s41467-018-04502-3
    [65]
    A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Energy Mater. 4, 1301469 (2014). doi: 10.1002/aenm.201301469
    [66]
    M. Morana, H. Azimi, G. Dennler, H. J. Egelhaaf, M. Scharber, K. Forberich, J. Hauch, R. Gaudiana, D. Waller, Z. H. Zhu, K. Hingerl, S. S. van Bavel, J. Loos, and C. J. Brabec, Adv. Funct. Mater. 20, 1180 (2010). doi: 10.1002/adfm.200900931
    [67]
    F. Etzold, I. A. Howard, N. Forler, D. M. Cho, M. Meister, H. Mangold, J. Shu, M. R. Hansen, K. Muellen, and F. Laquai, J. Am. Chem. Soc. 134, 10569 (2012). doi: 10.1021/ja303154g
    [68]
    Z. Guo, D. Lee, R. D. Schaller, X. Zuo, B. Lee, T. Luo, H. Gao, and L. Huang, J. Am. Chem. Soc. 136, 10024 (2014). doi: 10.1021/ja503465s
    [69]
    G. Li, X. Zhang, L. O. Jones, J. M. Alzola, S. Mukherjee, L. W. Feng, W. Zhu, C. L. Stern, W. Huang, J. Yu, V. K. Sangwan, D. M. DeLongchamp, K. L. Kohlstedt, M. R. Wasielewski, M. C. Hersam, G. C. Schatz, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 143, 6123 (2021). doi: 10.1021/jacs.1c00211
    [70]
    G. Jia, S. Zhang, L. Yang, C. He, H. Fan, and J. Hou, Acta Phys. Chim. Sin. 35, 76 (2019). doi: 10.3866/PKU.WHXB201712063
  • Related Articles

    [1]Junfang Yang, Qian Peng. Effects of Intermolecular Interactions on Luminescence Property in Organic Molecules[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 38-51. DOI: 10.1063/1674-0068/cjcp2112281
    [2]Wei Zhang, Xiao-song Liu, Lin Yan, Gang-bei Zhu, Zan-hao Wang, Yan-qiang Yang. Photo-Induced Intermolecular Electron Transfer-Effect of Acceptor Molecular Structures[J]. Chinese Journal of Chemical Physics , 2018, 31(6): 772-778. DOI: 10.1063/1674-0068/31/cjcp1807171
    [3]Chao Sun, Jie Liu, Wan-zhen Liang, Yi Zhao. Theoretical Insights into Intermolecular Hydrogen-Bonding Strengthening in Fluorenone-Methanol Complexes Induced by Electronic Excitation and Bulk Solvent Effect (cited: 1)[J]. Chinese Journal of Chemical Physics , 2013, 26(6): 617-626. DOI: 10.1063/1674-0068/26/06/617-626
    [4]Shao-feng Zhang, Xin-wen Ma, Xiao-long Zhu. Molecular Axis Orientation in Charge Transfer Reactions Determined with a Reaction Microscope[J]. Chinese Journal of Chemical Physics , 2009, 22(6): 621-626. DOI: 10.1088/1674-0068/22/06/621-626
    [5]Yuan-zuo Li, Wen-qin Zhang, Xiao-hong Zhao, Feng-cai Ma, Mao-du Chen. Transition Dipole,Charge Transfer,and Electron-hole Coherence in Two-photon Absorption: Visualizations with Two Dimensional Site and Three Dimensional Cube Representations[J]. Chinese Journal of Chemical Physics , 2009, 22(5): 529-534. DOI: 10.1088/1674-0068/22/05/529-534
    [6]Yong Ding, Jian-xiu Guo, Xiang-si Wang, Sha-sha Liu, Feng-cai Ma. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes[J]. Chinese Journal of Chemical Physics , 2009, 22(3): 269-274. DOI: 10.1088/1674-0068/22/03/269-274
    [7]Hai-long Wang, Tong-tong Lu, Tian-jing He, Dong-ming Chen. Theoretical Studies on the Structure and Spectrum of Imidazole-Chloranil Charge Transfer Complex[J]. Chinese Journal of Chemical Physics , 2008, 21(6): 560-568. DOI: 10.1088/1674-0068/21/06/560-568
    [8]Yong Ding, Yuan-zuo Li, Feng-cai Ma. Photoinduced Intramolecular Charge Transfer in Donor-acceptor Dyad and Donor-bridge-acceptor Triad[J]. Chinese Journal of Chemical Physics , 2008, 21(2): 111-117. DOI: 10.1088/1674-0068/21/02/111-117
    [9]Xia Qiying, Xiao Heming, Ju Xuehai, Gong Xuedong. Theoretical Study on Intermolecular Interactions of Ethyl Azide Dimers[J]. Chinese Journal of Chemical Physics , 2004, 17(1): 45-50. DOI: 10.1088/1674-0068/17/1/45-50
    [10]Zhang Chong, Bu Yuxiang. Theoretical Study on the Weak-interaction of Na-Furan Charge Transfer Complex with Density Functional Theory[J]. Chinese Journal of Chemical Physics , 2001, 14(1): 75-82. DOI: 10.1088/1674-0068/14/1/75-82
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. He, S.-S., He, T.-T., Zhou, Z.-J. et al. High Energy Density and Power Density Electrodes Prepared by Conductive Conjugated Polymers and Carbon Cloth | [导电共轭聚合物与碳布复合制备高能量密度和功率密度电极]. Acta Polymerica Sinica, 2024, 55(8): 1044-1058. DOI:10.11777/j.issn1000-3304.2024.24007
    2. Wang, X., Guo, H., Kang, D. et al. Exploring the effect of electric field on charge-transfer states at non-fullerene D/A interface. Journal of Molecular Liquids, 2023. DOI:10.1016/j.molliq.2023.122962
    3. Sun, X., Lv, J., Zhang, C. et al. Morphology Controlling of All-Small-Molecule Organic Solar Cells: From Donor Material Design to Device Engineering. Solar RRL, 2023, 7(16): 2300332. DOI:10.1002/solr.202300332
    4. Chen, Z., He, C., Ran, P. et al. Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells. Energy and Environmental Science, 2023, 16(8): 3373-3380. DOI:10.1039/d3ee00602f
    5. Li, Q., Wang, R., Zhang, C. The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors. Journal of Physical Chemistry Letters, 2023, 14(12): 3031-3038. DOI:10.1021/acs.jpclett.2c03911
    6. Liu, Z., Liu, Z., Wang, R. et al. Intersystem Crossing in Acceptor-Donor-Acceptor Type Organic Photovoltaic Molecules Promoted by Symmetry Breaking in Polar Environments. Journal of Physical Chemistry Letters, 2022, 13(44): 10305-10311. DOI:10.1021/acs.jpclett.2c03020
    7. Li, X., Qi, J., Zhu, J. et al. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. Journal of Physical Chemistry Letters, 2022, 13(39): 9177-9185. DOI:10.1021/acs.jpclett.2c02666

    Other cited types(0)

Catalog

    Figures(16)  /  Tables(4)

    Article Metrics

    Article views (672) PDF downloads (73) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return