Processing math: 100%

Advanced Search
T. J. Millar. The Role of Ultraviolet Photons in Circumstellar Astrochemistry[J]. Chinese Journal of Chemical Physics , 2020, 33(6): 668-679. DOI: 10.1063/1674-0068/cjcp2008145
Citation: T. J. Millar. The Role of Ultraviolet Photons in Circumstellar Astrochemistry[J]. Chinese Journal of Chemical Physics , 2020, 33(6): 668-679. DOI: 10.1063/1674-0068/cjcp2008145

The Role of Ultraviolet Photons in Circumstellar Astrochemistry

More Information
  • Corresponding author:

    T. J. Millar, E-mail: Tom.Millar@qub.ac.uk

  • Received Date: August 16, 2020
  • Accepted Date: October 13, 2020
  • Issue Publish Date: December 26, 2020
  • Stars with masses between 1 and 8 solar masses (M) lose large amounts of material in the form of gas and dust in the late stages of stellar evolution, during their Asymptotic Giant Branch (AGB) phase. Such stars supply up to 35 % of the dust in the interstellar medium and thus contribute to the material out of which our solar system formed. In addition, the circumstellar envelopes of these stars are sites of complex organic chemistry with over 80 molecules detected in them. We show that internal ultraviolet photons, either emitted by the star itself or from a close-in, orbiting companion, can significantly alter the chemistry that occurs in the envelopes particularly if the envelope is clumpy in nature. At least for the cases explored here, we find that in the presence of a stellar companion, such as a white dwarf star, the high flux of UV photons destroys H2O in the inner regions of carbon-rich AGB stars to levels below those observed and produces species such as C+ deep in the envelope in contrast to the expectations of traditional descriptions of circumstellar chemistry.
  • [1]
    A. L. Betz, Astrophys. J. Letts. 244, L103 (1981).
    [2]
    D. M. Goldhaber and A. L. Betz, Astrophys. J. Lett. 279, L55 (1984).
    [3]
    L. E. B. Johansson, C. Andersson, J. Ellder, P. Friberg, A. Hjalmarson, B. Hoglund, W. M. Irvine, H. Olofsson, and G. Rydbeck, Astron. Astrophys. 130, 227 (1984).
    [4]
    D. M. Goldhaber, A. L. Betz, and J. J. Ottusch, Astrophys. J. 314, 356 (1987).
    [5]
    P. J. Huggins and A. E. Glassgold, Astrophys. J. 252, 201 (1982).
    [6]
    P. J. Huggins, A. E. Glassgold, and M. Morris, Astrophys. J. 279, 284 (1984).
    [7]
    A. E. Glassgold, G. A. Mamon, A. Omont, and R. Lucas, Astron. Astrophys. 180, 183 (1987).
    [8]
    L. A. M. Nejad, T. J. Millar, and A. Freeman, Astron. Astrophys. 134, 129 (1984).
    [9]
    L. A. M. Nejad and T. J. Millar, Astron. Astrophys. 183, 279 (1987).
    [10]
    I. Cherchneff and A. E. Glassgold, Astrophys. J. Lett. 419, L41 (1993).
    [11]
    T. J. Millar, E. Herbst, and R. P. A. Bettens, MNRAS 316, 195 (2000).
    [12]
    L. Decin, M. Agúndez, M. J. Barlow, F. Daniel, J. Cernicharo, R. Lombaert, E. De Beck, P. Royer, B. Vandenbussche, R.Wesson, E. T. Polehampton, J. A. D. L. Blommaert, W. De Meester, K. Exter, H. Feuchtgruber, W. K. Gear, H. L. Gomez, M. A. T. Groenewegen, M. Guélin, P. C. Hargrave, R. Huygen, P. Imhof, R. J. Ivison, C. Jean, C. Kahane, F. Kerschbaum, S. J. Leeks, T. Lim, M. Matsuura, G. Olofsson, T. Posch, S. Regibo, G. Savini, B. Sibthorpe, B. M. Swinyard, J. A. Yates, and C. Waelkens, Nature 467, 64 (2010).
    [13]
    M. Agúndez, J. Cernicharo, and M. Guélin, Astrophys. J. Lett. 724, L133 (2010).
    [14]
    M. Agúndez, J. Cernicharo, G. Quintana-Lacaci, L. Velilla Prieto, A. Castro-Carrizo, N. Marcelino, and M. Guélin, Astrophys. J. 814, 143 (2015).
    [15]
    C. M. Sharp and G. J. Wasserburg, Geochim. Cosmochim. Acta 59, 1633 (1995).
    [16]
    M. Agúndez, J. I. Martínez, P. L. de Andres, J. Cernicharo, and J. A. Martín-Gago, Astron. Astrophys. 637, A59 (2020).
    [17]
    I. Cherchneff, Astron. Astrophys. 526, L11 (2011).
    [18]
    I. Cherchneff, Astron. Astrophys. 545, A12 (2012).
    [19]
    D. Gobrecht, I. Cherchneff, A. Sarangi, J. M. C. Plane, and S. T. Bromley, Astron. Astrophys. 585, A6 (2016).
    [20]
    H. P. Gail and E. Sedlmayr, Astron. Astrophys. 206, 153 (1988).
    [21]
    H. P. Gail and E. Sedlmayr, Astron. Astrophys. 347, 594 (1999).
    [22]
    C. Helling and J. M. Winters, Astron. Astrophys. 366, 229 (2001).
    [23]
    T. P. M. Goumans and S. T. Bromley, MNRAS 420, 3344 (2012).
    [24]
    S. T. Bromley, J. C. Gómez Martín, and J. M. C. Plane, Phys. Chem. Chem. Phys. 18, 26913 (2016).
    [25]
    D. Gobrecht, S. Cristallo, L. Piersanti, and S. T. Bromley, Astrophys. J. 840, 117 (2017).
    [26]
    J. Boulangier, D. Gobrecht, L. Decin, A. de Koter, and J. Yates, MNRAS 489, 4890 (2019).
    [27]
    A. L. Betz, R. A. McLaren, and D. L. Spears, Astrophys. J. Lett. 229, L97 (1979).
    [28]
    J. J. Keady and S. T. Ridgway, Astrophys. J. 406, 199 (1993).
    [29]
    V. Bujarrabal, J. Gomez-Gonzalez, and P. Planesas, Astron. Astrophys. 219, 256 (1989).
    [30]
    R. Sahai and J. H. Bieging, Astron. J. 105, 595 (1993).
    [31]
    D. González Delgado, H. Olofsson, F. Kerschbaum, F. L. Schöier, M. Lindqvist, and M. A. T. Groenewegen, Astron. Astrophys. 411, 123 (2003).
    [32]
    L. Decin, J. Cernicharo, M. J. Barlow, P. Royer, B. Vandenbussche, R. Wesson, E. T. Polehampton, E. De Beck, M. Agúndez, J. A. D. L. Blommaert, M. Cohen, F. Daniel, W. De Meester, K. Exter, H. Feuchtgruber, J. P. Fonfría, W. K. Gear, J. R. Goicoechea, H. L. Gomez, M. A. T. Groenewegen, P. C. Hargrave, R. Huygen, P. Imhof, R. J. Ivison, C. Jean, F. Kerschbaum, S. J. Leeks, T. Lim, M. Matsuura, G. Olofsson, T. Posch, S. Regibo, G. Savini, B. Sibthorpe, B. M. Swinyard, B. Tercero, C. Waelkens, D. K. Witherick, and J. A. Yates, Astron. Astrophys. 518, L143 (2010).
    [33]
    J. Cernicharo, L. B. F. M.Waters, L. Decin, P. Encrenaz, A. G. G. M. Tielens, M. Agúndez, E. De Beck, H. S. P.Müller, J. R. Goicoechea, M. J. Barlow, A. Benz, N. Crimier, F. Daniel, A. M. di Giorgio, M. Fich, T. Gaier, P. García-Lario, A. de Koter, T. Khouri, R. Liseau, R. Lombaert, N. Erickson, J. R. Pardo, J. C. Pearson, R. Shipman, C. Sánchez Contreras, and D. Teyssier, Astron. Astrophys. 521, L8 (2010).
    [34]
    M. Agúndez, J. P. Fonfría, J. Cernicharo, C. Kahane, F. Daniel, and M. Guélin, Astron. Astrophys. 543, A48 (2012).
    [35]
    J. Cernicharo, M. C. McCarthy, C. A. Gottlieb, M. Agúndez, L. Velilla Prieto, J. H. Baraban, P. B. Changala, M. Guélin, C. Kahane, M. A. Martin-Drumel, N. A. Patel, N. J. Reilly, J. F. Stanton, G. Quintana-Lacaci, S. Thorwirth, and K. H. Young, Astrophys. J. Lett. 806, L3 (2015).
    [36]
    M. Van de Sande, C. Walsh, T. P. Mangan, and L. Decin, MNRAS 490, 2023 (2019).
    [37]
    M. Van de Sande, C. Walsh, and T. Danilovich, MNRAS 495, 1650 (2020).
    [38]
    M. Saberi, W. H. T. Vlemmings, and E. De Beck, Astron. Astrophys. 625, A81 (2019).
    [39]
    X. Li, T. J. Millar, C. Walsh, A. N. Heays, and E. F. van Dishoeck, Astron. Astrophys. 568, A111 (2014).
    [40]
    X. Li, T. J. Millar, A. N. Heays, C. Walsh, E. F. van Dishoeck, and I. Cherchneff, Astron. Astrophys. 588, A4 (2016).
    [41]
    N. Mauron and P. J. Huggins, Astron. Astrophys. 452, 257 (2006).
    [42]
    J. M. Brown and T. J. Millar, MNRAS 339, 1041 (2003).
    [43]
    M. A. Cordiner and T. J. Millar, Astrophys. J. 697, 68 (2009).
    [44]
    K. E. S. Ford, D. A. Neufeld, P. F. Goldsmith, and G. J. Melnick, Astrophys. J. 589, 430 (2003).
    [45]
    D. McElroy, C. Walsh, A. J. Markwick, M. A. Cordiner, K. Smith, and T. J. Millar, Astron. Astrophys. 550, A36 (2013).
    [46]
    [47]
    A. N. Heays, A. D. Bosman, and E. F. van Dishoeck, Astron. Astrophys. 602, A105 (2017).
    [48]
    [49]
    G. J. Melnick, D. A. Neufeld, K. E. S. Ford, D. J. Hollenbach, and M. L. N. Ashby, Nature 412, 160 (2001).
    [50]
    M. Van de Sande, J. O. Sundqvist, T. J. Millar, D. Keller, W. Homan, A. de Koter, L. Decin, and F. De Ceuster, Astron. Astrophys. 616, A106 (2018).
    [51]
    M. Van de Sande, J. O. Sundqvist, T. J. Millar, D. Keller, W. Homan, A. de Koter, L. Decin, and F. De Ceuster, Astron. Astrophys. 634, C1 (2020).
    [52]
    T. J. Millar, J. Phys. Conf. Ser. 728, 052001(2016)
    [53]
    M. Van de Sande and T. J. Millar, Astrophys. J. 873, 36 (2019).
    [54]
    R. Montez Jr., S. Ramstedt, J. H. Kastner, W. Vlemmings, and E. Sanchez, Astrophys. J. 841, 33 (2017).
    [55]
    R. Ortiz and M. A. Guerrero, MNRAS 461, 3036 (2016).
    [56]
    R. Ortiz, M. A. Guerrero, and R. D. D. Costa, MNRAS 482, 4697 (2019).
    [57]
    G. Quintana-Lacaci, J. Cernicharo, M. Agúndez, L. Velilla Prieto, A. Castro-Carrizo, N. Marcelino, C. Cabezas, I. Peña, J. L. Alonso, J. Zúñiga, A. Requena, A. Bastida, Y. Kalugina, F. Lique, and M. Guélin, Astrophys. J. 818, 192 (2016).
    [58]
    M. Maercker, S. Mohamed, W. H. T. Vlemmings, S. Ramstedt, M. A. T. Groenewegen, E. Humphreys, F. Kerschbaum, M. Lindqvist, H. Olofsson, C. Paladini, M. Wittkowski, I. de Gregorio-Monsalvo, and L. A. Nyman, Nature 490, 232 (2012).
    [59]
    H. Kim, A. Trejo, S. Y. Liu, R. Sahai, R. E. Taam, M. R. Morris, N. Hirano, and I. T. Hsieh, Nature Astronomy 1, 0060 (2017).
    [60]
    P. Kervella, M. Montargès, S. T. Ridgway, G. Perrin, O. Chesneau, S. Lacour, A. Chiavassa, X. Haubois, and A. Gallenne, Astron. Astrophys. 564, A88 (2014).
    [61]
    P. Kervella, W. Homan, A. M. S. Richards, L. Decin, I. McDonald, M. Montargès, and K. Ohnaka, Astron. Astrophys. 596, A92 (2016).
    [62]
    L. Decin, M. Montargès, A. M. S. Richards, C. A. Gottlieb, W. Homan, I. McDonald, I. El Mellah, T. Danilovich, S. H. J. Wallström, A. Zijlstra, A. Baudry, J. Bolte, E. Cannon, E. De Beck, F. De Ceuster, A. de Koter, J. De Ridder, S. Etoka, D. Gobrecht, M. Gray, F. Herpin, M. Jeste, E. Lagadec, P. Kervella, T. Khouri, K. Menten, T. J. Millar, H. S. P. Müller, J. M. C. Plane, R. Sahai, H. Sana, M. Van de Sande, L. B. F. M. Waters, K. T. Wong, and J. Yates, Science 369, 1497 (2020).
    [63]
    W. Homan, E. Cannon, M. Montargès, A. M. S. Richards, T. J. Millar, and L. Decin, Astron. Astrophys. (in press) (2020),
    [64]
    H. Kim and R. E. Taam, Astrophys. J. Lett. 759, L22 (2012).
    [65]
    Z. Chen, A. Frank, E. G. Blackman, J. Nordhaus, and J. Carroll-Nellenback, MNRAS 468, 4465 (2017).
    [66]
    I. El Mellah, J. Bolte, L. Decin, W. Homan, and R. Keppens, Astron. Astrophys. 637, A91 (2020).
  • Related Articles

    [1]Zhimo Wang, Changjian Xie. Kinetics and Dynamics of the H(2S)+NO(X2Π)N(4S)+OH(X2Π) Reaction: A Quasi-classical Trajectory Study[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 207-212. DOI: 10.1063/1674-0068/cjcp2111262
    [2]Tian-gang Yang, Long Huang, Yu-run Xie, Tao Wang, Chun-lei Xiao, Zhi-gang Sun, Dong-xu Dai, Mao-du Chen, Dong H. Zhang, Xue-ming Yang. Effect of Reagent Rotational Excitation on Dynamics of F+H2→HF+H[J]. Chinese Journal of Chemical Physics , 2015, 28(4): 471-475. DOI: 10.1063/1674-0068/28/cjcp1505111
    [3]Li-zhi Wang, Chuan-lu Yang, Jing-juan Liang, Jing Xiao, Qing-gang Zhang. Isotopic Effects on Stereodynamics for Ca+HCl, Ca+DCl, and Ca+TCl Reactions[J]. Chinese Journal of Chemical Physics , 2011, 24(6): 686-690. DOI: 10.1088/1674-0068/24/06/686-690
    [4]Ying Shi, Ting-xian Xie, Ming-xing Jin. Quasi-classical Trajectory Study of C+CD→C2+D at Different Collision Energy[J]. Chinese Journal of Chemical Physics , 2011, 24(4): 373-377. DOI: 10.1088/1674-0068/24/04/373-377
    [5]刘世莉, 石英. Influence of Vibrational Excitation on Stereodynamics for O(3P)+D2→OD+D Reaction[J]. Chinese Journal of Chemical Physics , 2010, 23(6): 649-654. DOI: 10.1088/1674-0068/23/06/649-654
    [6]Hai-zhu Sun, Xin-guo Liu, Juan-juan Lv, Hui-rong Liu. Quasi-Classical Trajectory Study on O++DH (v=0, j=0)→OD++H Reaction at Different Collision Energy[J]. Chinese Journal of Chemical Physics , 2010, 23(5): 521-526. DOI: 10.1088/1674-0068/23/05/521-526
    [7]Xian-fang Yue, Jie Cheng, Hai-ran Feng, Hong Li, Emilia L. Wu. Theoretical Study on Stereodynamics of Reactions of N(2D)+H2→NH+H and N(2D)+D2→ND+D[J]. Chinese Journal of Chemical Physics , 2010, 23(4): 381-386. DOI: 10.1088/1674-0068/23/04/381-386
    [8]Victor Wei-keh Wu. Stereodynamics of O(3P)+H2 at Scattering Energies of 0.5, 0.75, and 1.0 eV[J]. Chinese Journal of Chemical Physics , 2010, 23(2): 149-154. DOI: 10.1088/1674-0068/23/02/149-154
    [9]Qiang Wei, Xing Li, Tie Li. Quasi-classical Trajectory Study of the Intramolecular Isotope Effect in the Reaction O(3P)+H2/HD[J]. Chinese Journal of Chemical Physics , 2009, 22(5): 523-528. DOI: 10.1088/1674-0068/22/05/523-528
    [10]Hui Song, Xiu-yan Wang, Rex. T. Skodje, Xue-ming Yang. Quasi-classical Trajectory Study on the H++H2 Reaction[J]. Chinese Journal of Chemical Physics , 2006, 19(5): 375-378. DOI: 10.1360/cjcp2006.19(5).375.4

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return