Advanced Search
Han-hong Huang, Yi-hu Wu, Mo-zhen Wang, Xue-wu Ge. Polyaniline Nanotubes Prepared by One-Step Synergistic Polymerization of Aniline and Acrylic Acid[J]. Chinese Journal of Chemical Physics , 2018, 31(6): 827-832. DOI: 10.1063/1674-0068/31/cjcp1805095
Citation: Han-hong Huang, Yi-hu Wu, Mo-zhen Wang, Xue-wu Ge. Polyaniline Nanotubes Prepared by One-Step Synergistic Polymerization of Aniline and Acrylic Acid[J]. Chinese Journal of Chemical Physics , 2018, 31(6): 827-832. DOI: 10.1063/1674-0068/31/cjcp1805095

Polyaniline Nanotubes Prepared by One-Step Synergistic Polymerization of Aniline and Acrylic Acid

More Information
  • Corresponding author:

    Mo-zhen Wang, E-mail: pstwmz@ustc.edu.cn

    Xue-wu Ge, E-mail: xwge@ustc.edu.cn; Tel: +86 551 63600843

  • Received Date: May 08, 2018
  • Accepted Date: May 30, 2018
  • Issue Publish Date: December 26, 2018
  • The electrochemical property of electrode materials greatly depends on their morphologies. This report introduces a novel and facile synthesis method for polyaniline (PANI) nanotubes from one-step synergistic polymerization of aniline and acrylic acid in an aqueous solution induced by the addition of ammonium persulfate (APS). The molar ratio of aniline to AA (Xani/AA) is found to have great influence on the morphology of the produced PANI. Hollow PANI nanotubes with an average inner diameter of 80 nm and outer diameter of 180 nm can be mainly produced when Xani/AA is not higher than 1. The electrochemical properties of the prepared PANI nanotubes have been investigated using a three-electrode system. The specific capacitance of PANI nanotubes can reach 436 F/g at a current density of 0.5 A/g in 1 mol/L H2SO4 solution. Furthermore, the specific capacitance of the PANI nanotube maintains 89.2% after 500 charging/discharging cycles at a current density of 0.5 A/g, indicating a good cycling stability.
  • [1]
    G. P. Wang, L. Zhang, and J. J. Zhang, Chem. Soc. Rev. 41, 797 (2012). doi: 10.1039/C1CS15060J
    [2]
    W. J. Lu, S. Z. Huang, L. Miao, M. X. Liu, D. Z. Zhu, L. C. Li, H. Duan, Z. J. Xu, and L. H. Gan, Chin. Chem. Lett. 28, 1324 (2017). doi: 10.1016/j.cclet.2017.04.007
    [3]
    L. L. Tu and C. Y. Jia, Prog. Chem. 22, 1610 (2010).
    [4]
    W. Fan, C. Zhang, W. W. Tjiu, K. P. Pramoda, C. He, and T. X. Liu, ACS Appl. Mater. Interfaces 5, 3382 (2013). doi: 10.1021/am4003827
    [5]
    A. Eftekhari, L. Li, and Y. Yang, J. Power Sources 347, 86 (2017). doi: 10.1016/j.jpowsour.2017.02.054
    [6]
    H. W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee, and H. Yoon, ACS Nano 6, 624 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22900544
    [7]
    G. Deng, Y. X. Peng, X. B. Ding, J. H Wang, X. P. Long, P. Li, and A. S. C. Chan, Chin. J. Chem. Phys. 15, 149 (2002). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXWL200202015.htm
    [8]
    T. K. Zhao, X. L. Ji, P. Bi, W. B. Jin, C. Y. Xiong, A. L. Dang, H. Li, T. H. Li, S. M. Shang, and Z. F. Zhou, Electrochim. Acta 230, 342 (2017). doi: 10.1016/j.electacta.2017.02.021
    [9]
    Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACS Nano 4, 1963 (2010). doi: 10.1021/nn1000035
    [10]
    L. R. Wang, F. Ran, Y. T. Tan, L. Zhao, L. B. Kong, and L. Kang, Chin. Chem. Lett. 22, 964 (2011). doi: 10.1016/j.cclet.2011.01.019
    [11]
    S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci. 34, 783 (2009). doi: 10.1016/j.progpolymsci.2009.04.003
    [12]
    H. Kim, Y. Kim, S. J. Lee, W. S. Han, and J. H. Jung, Chem. Lett. 37, 598 (2008). doi: 10.1246/cl.2008.598
    [13]
    M. X. Wan, Macromol. Rapid Commun. 30, 963 (2009). doi: 10.1002/marc.v30:12
    [14]
    W. Chen, R. B. Rakhi, and H. N. Alshareef, J. Mater. Chem. A 1, 3315 (2013). doi: 10.1039/c3ta00499f
    [15]
    P. Banerjee and B. M. Mandal, Macromolecules 28, 3940 (1995). doi: 10.1021/ma00115a029
    [16]
    P. Banerjee and B. M. Mandal, Synth. Met. 74, 257 (2015).
    [17]
    I. Y. Choi, J. Lee, H. Ahn, J. Lee, H. C. Choi, and M. J. Park, Angew. Chem. Int. Ed. 54, 10497 (2015). doi: 10.1002/anie.201503332
    [18]
    J. J. Mu, G. F. Ma, H. Peng, J. J. Li, K. J. Sun, and Z. Q. Lei, J. Power Sources 242, 797 (2013). doi: 10.1016/j.jpowsour.2013.05.117
    [19]
    H. K. Chaudhari and D. S. Kelkar, Polym. Int. 42, 380 (1997). doi: 10.1002/(ISSN)1097-0126
    [20]
    D. Li, J. X. Huang, and R. B. Kaner, Acc. Chem. Res. 42, 135 (2009). doi: 10.1021/ar800080n
    [21]
    J. Li, H. Q. Xie, Y. Li, J. Liu, and Z. X. Li, J. Power Sources 196, 10775 (2011). doi: 10.1016/j.jpowsour.2011.08.105
    [22]
    J. H. Chen, X. Y. Feng, W. F. Chen, Y. Q. Song, and L. F. Yan, Chin. J. Chem. Phys. 30, 112 (2017). doi: 10.1063/1674-0068/30/cjcp1604092
  • Related Articles

    [1]Wen-xiang Cheng, Tong-tong Jiang, Hai-bo Hu. Flexible Planar Micro-supercapacitors Based on Carbon Nanotubes[J]. Chinese Journal of Chemical Physics , 2022, 35(3): 562-569. DOI: 10.1063/1674-0068/cjcp2008149
    [2]Wei-shuai Liu, Yu-qing Song, Heng Wang, Hong-fei Wang, Li-feng Yan. 3D Macro-Micro-Mesoporous FeC2O4/Graphene Hydrogel Electrode for High-Performance 2.5 V Aqueous Asymmetric Supercapacitors[J]. Chinese Journal of Chemical Physics , 2018, 31(5): 707-716. DOI: 10.1063/1674-0068/31/cjcp1805097
    [3]Jun-hao Chen, Xia-yu Feng, Wu-feng Chen, Yu-qing Song, Li-feng Yan. Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 112-116. DOI: 10.1063/1674-0068/30/cjcp1604092
    [4]Bin Cheng, Lian-sheng Jiao, Zhong-feng Tang, Sheng-jie Zhang, Hong-li Chen, Chun-hua Chen. Nano-Li3V2(PO4)3/C Synthesized by Thermal Polymerization Method as Cathode Material for Lithium Ion Batteries[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 699-702. DOI: 10.1063/1674-0068/29/cjcp1604091
    [5]Chun-ming Wen, Zhi-yu Wen, Zheng You, Xiao-feng Wang. Preparation and Electrochemical Characteristics of Three-dimensional Manganese Oxide Micro-supercapacitor Electrode[J]. Chinese Journal of Chemical Physics , 2012, 25(2): 209-213. DOI: 10.1088/1674-0068/25/02/209-213
    [6]Xiao-feng Wang, Dian-bo Ruan, Zheng You. Pseudo-capacitive Behavior of Cobalt Hydroxide/Carbon Nanotubes Composite Prepared by Cathodic Deposition[J]. Chinese Journal of Chemical Physics , 2006, 19(6): 499-505. DOI: 10.1360/cjcp2006.19(6).499.7
    [7]Xiao-feng Wang, Zheng You, Dian-bo Ruan. Hydrous Ruthenium Oxide with High Rate Pseudo-Capacitance Prepared by a New Sol-Gel Process[J]. Chinese Journal of Chemical Physics , 2006, 19(4): 341-346. DOI: 10.1360/cjcp2006.19(4).341.6
    [8]Wang Xiaofeng, You Zheng, Ruan Dianbo. Application of Polyaniline in Hybrid Electrochemical Capacitor[J]. Chinese Journal of Chemical Physics , 2005, 18(4): 635-640. DOI: 10.1088/1674-0068/18/4/635-640
    [9]Wang Xiaofeng, Ruan Dianbo, Liang Ji. Pseudocapacitive Behavior of Nickel Oxide/Carbon Nanotubes Composite Prepared by Cathodic Deposition[J]. Chinese Journal of Chemical Physics , 2005, 18(3): 421-427. DOI: 10.1088/1674-0068/18/3/421-427
    [10]Lai Wei, Liu Xingqin. Investigation On the Behavior of Poly(acrylic acid) in Water Solution and Its Effect on the Rheology of α- Al2O3 Suspension[J]. Chinese Journal of Chemical Physics , 2001, 14(3): 365-370. DOI: 10.1088/1674-0068/14/3/365-370
  • Cited by

    Periodical cited type(2)

    1. Kojima, H., Yoshida, T., Kondo, H. et al. Drug Extended-Release System Utilizing Micelle Formation of Highly Water-Soluble Drugs and a Counter Polymer. Molecular Pharmaceutics, 2023. DOI:10.1021/acs.molpharmaceut.3c00377
    2. Zhu, W., Jiang, Z., Chen, H. et al. γ-ray radiation effect on the properties of boron nitride/epoxy composites | [γ 辐 射 对 氮 化 硼 / 环 氧 树 脂 复 合 材 料 性 能 的 影 响]. Fushe Yanjiu yu Fushe Gongyi Xuebao/Journal of Radiation Research and Radiation Processing, 2020, 38(3): 030201. DOI:10.11889/j.1000-3436.2020.rrj.38.030201

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1139) PDF downloads (332) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return