Advanced Search
Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. DOI: 10.1063/1674-0068/30/cjcp1608153
Citation: Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. DOI: 10.1063/1674-0068/30/cjcp1608153

Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+

More Information
  • Received Date: August 04, 2016
  • Revised Date: September 12, 2016
  • Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fluoroionophore and chromophore for the optical detection of Hg2+. The recognizing behaviors were investigated both experimentally and computationally. They exhibited high selectivity and sensitivity for Hg2+ over other commonly coexistent metal ions in CH3CN/H2O (1:1, V/V) solution. Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg2+ with sensors. The detection limit was measured to be at least 0.14 μmol/L. After addition of Hg2+, the color changed from colourless to pink, which was easily detected by the naked eye in both solution and hydrogel sensor.
  • [1]
    O. Tavakoli and H. Yoshida, Environ. Sci. Technol. 39, 2357 (2005).
    [2]
    F. Yan, T. Zheng, S. Guo, D. Shi, Z. Han, S. Zhou, and L. Chen, Spectrochim. Acta A 151, 881 (2015).
    [3]
    G. B. Cai, G. X. Zhao, X. K. Wang, and S. H. Yu, J. Phys. Chem. C 114, 12948 (2010).
    [4]
    P. B. Tchounwou, W. K. Ayensu, N. Ninashvili, and D. Sutton, Environ. Toxicol. 18, 149 (2003).
    [5]
    J. S. Wu, I. C. Hwang, K. S. Kim, and J. S. Kim, Org. Lett. 9, 907 (2007).
    [6]
    S. H. Kim, J. S. Kim, S. M. Park, and S. K. Chang, Org. Lett. 8, 371 (2006).
    [7]
    M. Wennberg, T. Lundh, I. A. Bergdahl, G. Hallmans, J. H. Jansson, B. Stegmayr, H. M. Custodio, and S. Skerfving, Environ. Res. 100, 330 (2006).
    [8]
    J. W. Lee, H. S. Jung, P. S. Kwon, J. W. Kim, R. A. Bartsch, Y. Kim, S. J. Kim, and J. S. Kim, Org. lett. 10, 3801 (2008).
    [9]
    W. H. Hsu, S. J. Jiang, and A. C. Sahayam, Talanta 117, 268 (2013).
    [10]
    A. Q. Shah, T. G. Kazi, J. A. Baig, H. I. Afridi, and M. B. Arain, Food Chem. 134, 2345 (2012).
    [11]
    J. F. Callan, A. P. de Silva, and D. C. Magri, Tetrahe-dron 61, 8551 (2005).
    [12]
    R. W. Ramette and E. B. Sandell, J. Am. Chem. Soc. 78, 4872 (1956).
    [13]
    D. S. Mcclure, J. Chem. Phys. 20, 682 (1952).
    [14]
    M. M. Pires and J. Chmielewski, Org. Lett. 10, 837 (2008).
    [15]
    J. F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S. J. Kim, and J. S. Kim, Org. Lett. 12, 3852 (2010).
    [16]
    B. Bag and A. Pal, Org. Biomol. Chem. 9, 915 (2011).
    [17]
    F. Y. Yan, D. L. Cao, M. Wang, N. Yang, Q. H. Yu, L. F. Dai, and L. Chen, J. Fluoresc. 22, 1249 (2012).
    [18]
    H. L. Li, J. L. Fan, F. L. Song, H. Zhu, J. J. Du, S. G. Sun, and X. J. Peng, Chem. Eur. J. 16, 12349 (2010).
    [19]
    L. X. Wu, Y. R. Dai, and G. Marriott, Org. Lett. 13, 2018 (2011).
    [20]
    H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, Chem. Soc. Rev. 37, 1465 (2008).
    [21]
    M. Beija, C. A. M. Afonso, and J. M. G. Martinho, Chem. Soc. Rev. 38, 2410 (2009).
    [22]
    B. Sen, M. Mukherjee, S. Pal, K. Dhara, S. K. Mandal, A. R. Khuda-Bukhsh, and P. Chattopadhyay, Rsc. Adv. 4, 14919 (2014).
    [23]
    N. Wanichacheva, O. Hanmeng, S. Kraithong, and K. Sukrat, J. Photoch. Photobio. A 278, 75 (2014).
    [24]
    B. Biswal and B. Bag, Org. Biomol. Chem. 11, 4975 (2013).
    [25]
    X. Zhang, Y. Shiraishi, and T. Hirai, Org. Lett. 9, 5039 (2007).
    [26]
    L. K. Kumawat, N. Mergu, A. K. Singh, and V. K. Gupta, Sensor Actuat B 212, 389 (2015).
    [27]
    S. Chemate and N. Sekar, Sensor Actuat B 220, 1196 (2015).
    [28]
    H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D. Lan, and J. G. Xu, Org Lett. 8, 859 (2006).
    [29]
    X. Cheng, Q. Li, J. Qin, and Z. Li, ACS Appl. Mater. Inter. 2, 1066 (2010).
    [30]
    C. Y. Huang, Method Enzymol. 87, 509 (1982).
    [31]
    J. L. Zhang, Y. M. Zhou, W. P. Hu, L. Zhang, Q. Huang, and T. S. Ma, Sensor Actuat. B 183, 290 (2013).
    [32]
    J. Ding, H. Li, C. Wang, J. Yang, Y. Xie, Q. Peng, Q. Li, and Z. Li, ACS Appl. Mater. Inter. 7, 11369 (2015).
    [33]
    A. Papadopoulou, R. J. Green, and R. A. Frazier, J. Agr. Food Chem. 53, 158 (2005).
    [34]
    E. S. Lander and N. J. Schork, Science 266, 353 (1994).
    [35]
    Y. J. Liu, H. Chao, J. H. Yao, H. Li, Y. X. Yuan, and L. N. Ji, Helv. Chim. Acta 87, 3119 (2004).
    [36]
    Y. Tian, Y. Wang, Y. Xu, Y. Liu, D. Li, and C. Fan, Sci. China Chem. 58, 514 (2015).
    [37]
    Y. Wang, Y. Cui, R. Liu, F. Gao, L. Gao, and X. Gao, Sci. China Chem. 58, 819 (2015).
    [38]
    X. J. Liu, M. Zhang, M. P. Yang, B. Li, Z. Cheng, and B. Q. Yang, Tetrahedron 71, 8194 (2015).
    [39]
    H. Ozay and O. Ozay, Chem. Eng. J. 232, 364 (2013)
  • Related Articles

    [1]Kang Wei, Lei Zhang, Shen-long Jiang, Qun Zhang. Energy Transfer and Electron Transfer in Composite System of Carbon Quantum Dots/Rhodamine B Molecules[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 643-648. DOI: 10.1063/1674-0068/cjcp1905105
    [2]Lu Chen, Lei Zhang, Shen-long Jiang, Qun Zhang. Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 165-170. DOI: 10.1063/1674-0068/31/cjcp1710196
    [3]Shan Wang, Yi Huang, Jian-she Yue. Synthesis, Characterization, and Fluorescence Sensor Property of Polyurethane/Ag2S Nanostrips[J]. Chinese Journal of Chemical Physics , 2015, 28(6): 751-754. DOI: 10.1063/1674-0068/28/cjcp1502023
    [4]Hui Li, Zhi-yun Hao, Xin Meng, Yi-chang Zhu. A Novel Naked-Eye and Dual-Channel Responsive Fluorescent Probe for Cu2+ Based on 3,4-Disubstituted-1,8-naphthalimide[J]. Chinese Journal of Chemical Physics , 2015, 28(2): 235-239. DOI: 10.1063/1674-0068/28/cjcp1410184
    [5]Yong Ma, Wei Hu, Xiu-neng Song, Chuan-kui Wang. Density Functional Theory Study on Raman Spectra of Rhodamine Molecules in Different Forms[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 291-296. DOI: 10.1063/1674-0068/27/03/291-296
    [6]Xue-mei Wang, Shou-guo Wu, Hao Liu, Lei Zhou, Qi-ping Zhao. Graphene-gold Nanoparticle Composite Film Modified Electrode for Determination of Trace Mercury in Environmental Water[J]. Chinese Journal of Chemical Physics , 2013, 26(5): 590-596. DOI: 10.1063/1674-0068/26/05/590-596
    [7]Kai-li Fan, Zhen-kun Guo, Zhi-gang Geng, Jing Ge, Shen-long Jiang, Jia-hua Hu, Qun Zhang. How Graphene Oxide Quenches Fluorescence of Rhodamine 6G[J]. Chinese Journal of Chemical Physics , 2013, 26(3): 252-258. DOI: 10.1063/1674-0068/26/03/252-258
    [8]Guang-yue Li, Ping Song, Guo-zhong He. TDDFT Study on Different Sensing Mechanisms of Similar Cyanide Sensors Based on Michael Addition Reaction[J]. Chinese Journal of Chemical Physics , 2011, 24(3): 305-310. DOI: 10.1088/1674-0068/24/03/305-310
    [9]Si Minzhen, Wu Rongguo, Zhang Pengxiang. Quenching and Enhancement of Fluorescence of Dye Molecule on Negative and Positive Colloid Silver Particles[J]. Chinese Journal of Chemical Physics , 2002, 15(5): 346-350. DOI: 10.1088/1674-0068/15/5/346-350
    [10]Xiao Li, Lin Peiyan, Yang Zhibo, Bian Guozhu. The Effect of ZrO2 on the Rh/γ-Al2O3 Catalyst for NO Catalytic Reduction[J]. Chinese Journal of Chemical Physics , 2000, 13(3): 329-335. DOI: 10.1088/1674-0068/13/3/329-335
  • Cited by

    Periodical cited type(3)

    1. Li, M., Zhang, S., Zhang, P. et al. Rhodamine functionalized cellulose for mercury detection and removal: A strategy for providing in situ fluorimetric and colorimetric responses. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.135251
    2. Yan, L., Gu, X., Wang, Z. et al. Fe3+-Responsive Micelle Based on an Amphiphilic Polymer and a Rhodamine B-Containing Amphiphile in Aqueous Media. ChemistrySelect, 2018, 3(12): 3406-3410. DOI:10.1002/slct.201800311
    3. Sakthivel, P., Sekar, K., Sivaraman, G. et al. Rhodamine-benzothiazole conjugate as an efficient multimodal sensor for Hg2+ ions and its application to imaging in living cells. New Journal of Chemistry, 2018, 42(14): 11665-11672. DOI:10.1039/c8nj01736k

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1515) PDF downloads (834) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return