Advanced Search
Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. DOI: 10.1063/1674-0068/29/cjcp1604073
Citation: Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. DOI: 10.1063/1674-0068/29/cjcp1604073

Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst

More Information
  • Received Date: April 12, 2016
  • Revised Date: May 06, 2016
  • Catalytic degradation of cellulose to chemicals is an attracting topic today for the conversion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess uniform, continuous, and permeable channels, they are valuable candidate as catalysts. Here, a new 3D MOF/graphene catalyst was prepared by in situ growth of the zeolitic imidazolate frameworks (ZIF-8) nanoparticles inside the pore of an as-formed 3D reduced graphene oxide (rGO) hydrogel. The ZIF-8/rGO nanocomposite owns both micropores and mesopores with large specific surface area and plenty of acids sites, which is an idea catalyst for biomass degradation. Cellulose was dissolved in alkaline aqueous solution at first, and then it was degraded efficiently over the new catalyst under hydrothermal condition. The conversion reaches 100% while the main products are formic acid with a maximum yield of 93.66%. In addition, the catalyst can be reused with high activity.
  • [1]
    A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411(2007).
    [2]
    J. J. Bozell, Science 329, 522(2010).
    [3]
    D. R. Dodds and R. A. Gross, Science 318, 1250(2007).
    [4]
    C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff, Science 337, 695(2012).
    [5]
    M. G. Adsul, A. J. Varma, and D. V. Gokhale, Green Chem. 9, 58(2007).
    [6]
    M. S. Holm, S. Saravanamurugan, and E. Taarning, Science 328, 602(2010).
    [7]
    E. J. Cho, S. Jung, H. J. Kim, Y. G. Lee, K. C. Nam, H. J. Lee, and H. J. Bae, Chem. Commun. 48, 886(2012).
    [8]
    M. Niu, Y. Hou, S. Ren, W. Wu, and K. N. Marsh, Green Chem. 17, 453(2015).
    [9]
    M. Grasemann and G. Laurenczy, Energy Environ. Sci. 5, 8171(2012).
    [10]
    F. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, and H. Enomoto, Green Chem. 10, 612(2008).
    [11]
    J. Xu, H. Zhang, Y. Zhao, Z. Yang, B. Yu, H. Xu, and Z. Liu, Green Chem. 16, 4931(2014).
    [12]
    J. Xu, Y. Zhao, H. Xu, H. Zhang, B. Yu, L. Hao, and Z. Liu, Appli. Cat. B 154, 267(2014).
    [13]
    J. Zhang, M. Sun, and Y. Han, Rsc Adv. 4, 35463(2014).
    [14]
    J. Reichert, B. Brunner, A. Jess, P. Wasserscheid, and J. Albert, Energy Environ. Sci. 8, 2985(2015).
    [15]
    J. L. Song, H. L. Fan, J. Ma, and B. X. Han, Green Chem. 15, 2619(2013).
    [16]
    S. D. Zhu, Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, and G. Wu, Green Chem. 8, 325(2006).
    [17]
    J. P. Zhou and L. N. Zhang, Polym. J. 32, 866(2000).
    [18]
    J. P. Zhou, L. N. Zhang, and J. Cai, J. Polym. Sci. Part B 42, 347(2004).
    [19]
    N. Sun, H. Rodriguez, M. Rahman, and R. D. Rogers, Chem. Commun. 47, 1405(2011).
    [20]
    C. Z. Li, Q. Wang, and Z. K. Zhao, Green Chem. 10, 177(2008).
    [21]
    L. L. Zhou, R. J. Liang, Z. W. Ma, T. H. Wu, and Y. Wu, Bioresour. Technol. 129, 450(2013).
    [22]
    F. J. Liu, R. K. Kamat, I. Noshadi, D. Peck, R. S. Parnas, A. M. Zheng, C. Z. Qi, and Y. Lin, Chem. Commun. 49, 8456(2013).
    [23]
    L. Yan and X. Qi, Acs Sustainable Chem. Eng. 2, 897(2014).
    [24]
    Z. Jiang, Z. Zhang, J. Song, Q. Meng, H. Zhou, Z. He, and B. Han, ACS Sustainable Chem. Eng. 4, 305(2016).
    [25]
    J. Chen, R. Liu, Y. Guo, L. Chen, and H. Gao, Acs Catalysis 5, 722(2015).
    [26]
    A. Corma, H. García, and F. X. Llabrés í Xamena, Chem. Rev. 110, 4606(2010).
    [27]
    M. Jahan, Z. Liu, and K. P. Loh, Adv. Funct. Mater. 23, 5363(2013).
    [28]
    Y. J. Min, W. Z. Li, G. Lin, L. S. Jia, W. H. Li, Z. W. Tao, and J. Qing, Adv. Energy Mater. 5, 1500107(2015).
    [29]
    Y. Z. Chen, G. Cai, Y. Wang, Q. Xu, S. H. Yu, and H. L. Jiang, Green Chem. 18, 1212(2016).
    [30]
    W. Chen and L. Yan, Nanoscale 3, 3132(2011).
    [31]
    L. Zhang, Y. Mao, J. P. Zhou, and J. Cai, Ind. Eng. Chem. Res. 44, 522(2005).
    [32]
    W. Chen, S. Li, C. Chen, and L. Yan, Adv. Mater. 23, 5679(2011).
  • Related Articles

    [1]Jing Lei, Zhen Wei, Mian-le Xu, Jie Wei, Yan-xia Chen, Shen Ye. Effect of Sulfate Adlayer on Formic Acid Oxidation on Pd(111) Electrode[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 649-656. DOI: 10.1063/1674-0068/cjcp1904079
    [2]Yi-heng Zhang, Ming-hui Fan, Rui Chang, Quan-xin Li. Production of Benzoic Acid through Catalytic Transformation of Renewable Lignocellulosic Biomass[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 588-594. DOI: 10.1063/1674-0068/30/cjcp1703047
    [3]Jun-jie Li, Jun-ling Lu. FeOx Coating on Pd/C Catalyst by Atomic Layer Deposition Enhances the Catalytic Activity in Dehydrogenation of Formic Acid[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 319-324. DOI: 10.1063/1674-0068/30/cjcp1703032
    [4]Zhen-ya Jiang, Li-feng Yan. Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catalyst[J]. Chinese Journal of Chemical Physics , 2015, 28(2): 230-234. DOI: 10.1063/1674-0068/28/cjcp1412211
    [5]Zun-biao Zhang, Jie Xu, Jing Kang, Yan-xia Chen. Role of Bridge-bonded Formate in Formic Acid Dehydration to CO at Pt Electrode: Electrochemial in-situ Infrared Spectroscopic Study[J]. Chinese Journal of Chemical Physics , 2013, 26(4): 471-476. DOI: 10.1063/1674-0068/26/04/471-476
    [6]Jie Xu, Dong Mei, Dao-fu Yuan, Zun-biao Zhang, Shao-xiong Liu, Yan-xia Chen. A Revisit to the Role of Bridge-adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid at Pt Electrodes (cited: 2)[J]. Chinese Journal of Chemical Physics , 2013, 26(3): 321-328. DOI: 10.1063/1674-0068/26/03/321-328
    [7]Can-hua Zhou, Shi-bo Cheng, Hong-ming Yin, Guo-zhong He. Detection of OH Radical in the Photodissociation of p-Aminobenzoic Acid at 266 nm[J]. Chinese Journal of Chemical Physics , 2009, 22(6): 681-685. DOI: 10.1088/1674-0068/22/06/681-685
    [8]Feng-yan Wang, Zhi-chao Chen, Yong-wei Zhang, Quan Shuai, Bo Jiang, Dong-xu Dai, Xiu-yan Wang, Xue-ming Yang . UV Photodissociation Dynamics of Nitric Acid: The Hydroxyl Elimination Channel[J]. Chinese Journal of Chemical Physics , 2009, 22(2): 191-196. DOI: 10.1088/1674-0068/22/02/191-196
    [9]Xiao-fang Chen, Kun Yang, Ke-li Han . Theoretical Study of 1,3-Dipolar Cycloaddition of Hydrazoic Acid to Substituted Ynamines[J]. Chinese Journal of Chemical Physics , 2009, 22(2): 143-148. DOI: 10.1088/1674-0068/22/02/143-148
    [10]?Dai-shi Guo, Zi-feng Ma, Chun-sheng Yin, Qi-zhong Jiang. Preparation and Acid Catalytic Activity of TiO2 Grafted Silica MCM-41 with Sulfate Treatment[J]. Chinese Journal of Chemical Physics , 2008, 21(1): 21-25. DOI: 10.1088/1674-0068/21/01/21-26
  • Cited by

    Periodical cited type(12)

    1. Wei, G.-H., Lu, T., Liu, H.-Y. et al. Exploring the continuous cleavage-oxidation mechanism of the catalytic oxidation of cellulose to formic acid: A combined experimental and theoretical study. Fuel, 2023. DOI:10.1016/j.fuel.2023.127667
    2. Zhou, X., Zhang, Y., Zhou, W. et al. Fabrication of MOF-based composite for synergistic catalysis. Frontiers of Materials Science, 2023, 17(1): 230636. DOI:10.1007/s11706-023-0636-x
    3. Xia, D., Yu, H., Li, H. et al. Carbon-based and carbon-supported nanomaterials for the catalytic conversion of biomass: a review. Environmental Chemistry Letters, 2022, 20(3): 1719-1744. DOI:10.1007/s10311-022-01402-3
    4. Su, Y., Lu, M., Su, R. et al. A 3D [email protected] composite as catalyst for efficient conversion of straw cellulose into valuable organic acid. Chinese Chemical Letters, 2022, 33(5): 2573-2578. DOI:10.1016/j.cclet.2021.08.078
    5. Adil, N.L.Z.Z.A.Z., Harun, F.W., Azhari, S. et al. DIRECT CATALYTIC CONVERSION OF CELLULOSE INTO FORMIC ACID BY SUPPORTED PHOSPHOTUNGSTIC ACID CATALYST | [(Penukaran Terus Selulosa Kepada Asid Formik Menggunakan Pemangkin Asid Fosfotungstik yang Disokong)]. Malaysian Journal of Analytical Sciences, 2022, 26(2): 303-317.
    6. Li, C., Qiao, Y., Li, Y. et al. Preparation and Application of MOFs / Hydrogel Composites | [MOFs/水凝胶复合材料的制备及其应用研究]. Progress in Chemistry, 2021, 33(11): 1964-1971. DOI:10.7536/PC201062
    7. Yang, Y., Li, Z., Huang, Y. et al. Preparation and Application of MOF-Based Hydrogel Materials | [MOF基水凝胶材料的制备及其应用]. Progress in Chemistry, 2021, 33(5): 726-739. DOI:10.7536/PC200694
    8. Aljammal, N., Jabbour, C., Thybaut, J.W. et al. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019. DOI:10.1016/j.ccr.2019.213064
    9. Su, H., Bi, Z., Ni, Y. et al. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. Green Energy and Environment, 2019, 4(4): 391-399. DOI:10.1016/j.gee.2019.01.009
    10. Sudarsanam, P., Zhong, R., Van Den Bosch, S. et al. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47(22): 8349-8402. DOI:10.1039/c8cs00410b
    11. Gong, J., Li, W., Li, S. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31(1): 52-60. DOI:10.1063/1674-0068/31/cjcp1705108
    12. Jin, F., Fan, M.-H., Jia, Q.-F. et al. Synthesis of Cumene from Lignin by Catalytic Transformation. Chinese Journal of Chemical Physics, 2017, 30(3): 348-356. DOI:10.1063/1674-0068/30/cjcp1703038

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1554) PDF downloads (974) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return