Advanced Search
Shu-xian Li, Hui-jun Jiang, Zhong-huai Hou. Diffusion of Nanoparticles in Semidilute Polymer Solutions: A Multiparticle Collision Dynamics Study[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 549-556. DOI: 10.1063/1674-0068/29/cjcp1603058
Citation: Shu-xian Li, Hui-jun Jiang, Zhong-huai Hou. Diffusion of Nanoparticles in Semidilute Polymer Solutions: A Multiparticle Collision Dynamics Study[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 549-556. DOI: 10.1063/1674-0068/29/cjcp1603058

Diffusion of Nanoparticles in Semidilute Polymer Solutions: A Multiparticle Collision Dynamics Study

More Information
  • Received Date: March 26, 2016
  • Revised Date: May 03, 2016
  • The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions among polymer monomers are focused. Extensive simulations show that the dependence of diffusion coefficient D on the polymer concentration c agrees with Phillies equation D-exp (-αcδ) with a scaling exponent δ≈0.97 which coincides with the experimental one in literature. For increasing nanoparticle size, the scaling prefactor α increases monotonically while the scaling exponent always keeps fixed. Moreover, we also study the diffusion of nanoparticle without hydrodynamic interactions and find that mobility of the nanoparticle slows down, and the scaling exponent is obviously different from the one in experiments, implying that hydrodynamic interactions play a crucial role in the diffusion of a nanoparticle in semidilute polymer solutions.
  • [1]
    Q. Lu and M. J. Solomon, Phys. Rev. E 66, 061504 (2002).
    [2]
    T. A. Waigh, Rep. Prog. Phys. 68, 685 (2005).
    [3]
    P. Cicuta and A. M. Donald, Soft Matter 3, 1449 (2007).
    [4]
    D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
    [5]
    A. B. Goins, H. Sanabria, and M. N.Waxham, Biophys. J. 95, 5362 (2008).
    [6]
    T. Kalwarczyk, N. Ziebacz, A. Bielejewska, E. Zaboklicka, K. Koynov, J. Szymanski, A. Wilk, A. Patkowski, J. Gapinski, H. J. Butt, and H. Robert, Nano Lett. 11, 2157 (2011).
    [7]
    M. Tabaka, T. Kalwarczyk, J. Szymanski, S. Hou, and R. Ho lyst, Biophysics 2, 54 (2014).
    [8]
    J. Liu, L. Zhang, D. Cao, and W. Wang, Phys. Chem. Chem. Phys. 11, 11365 (2009).
    [9]
    S. K. Kumar and R. Krishnamoorti, Annual Rev. Chem. Biomol. Eng. 1, 37 (2010).
    [10]
    B. Hong and A. Z. Panagiotopoulos, Soft Matter 9, 6091 (2013).
    [11]
    Y. Li, M. Kröger, and W. K. Liu, Soft Matter 10, 1723 (2014).
    [12]
    A. Karatrantos, N. Clarke, R. J. Composto, and K. I. Winey, Soft Matter 11, 382 (2015).
    [13]
    X. Ye, P. Tong, and L. Fetters, Macromolecules 31, 5785 (1998).
    [14]
    R. Ho lyst, A. Bielejewska, J. Szymański, A. Wilk, A. Patkowski, J. Gapi'nski, A. BZywociński, T. Kalwarczyk, E. Kalwarczyk, M. Tabaka, Z. Natalia, and W. A. Stefan, Phys. Chem. Chem. Phys. 11, 9025 (2009).
    [15]
    R. A. Omari, A. M. Aneese, C. A. Grabowski, and A. Mukhopadhyay, J. Phys. Chem. B 113, 8449 (2009).
    [16]
    I. Kohli and A. Mukhopadhyay, Macromolecules 45, 6143 (2012).
    [17]
    H. Guo, G. Bourret, R. B. Lennox, M. Sutton, J. L. Harden, and R. L. Leheny, Phys. Rev. Lett. 109, 055901 (2012).
    [18]
    E. A. Mun, C. Hannell, S. E. Rogers, P. Hole, A. C. Williams, and V. V. Khutoryanskiy, Langmuir 30, 308 (2013).
    [19]
    A. Vagias, R. Raccis, K. Koynov, U. Jonas, H. J. Butt, G. Fytas, P. Košovan, O. Lenz, and C. Holm, Phys. Rev. Lett. 111, 088301 (2013).
    [20]
    F. Babaye Khorasani, R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad, Macromolecules 47, 5328 (2014).
    [21]
    R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad, ACS Macro Lett. 4, 1169 (2015).
    [22]
    L. H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 44, 7853 (2011).
    [23]
    A. Ochab-Marcinek and R. Ho lyst, Soft Matter 7, 7366 (2011).
    [24]
    A. Ochab-Marcinek, S. A. Wieczorek, N. Ziebacz, and R. Ho lyst, Soft Matter 8, 11173 (2012).
    [25]
    U. Yamamoto and K. S. Schweizer, Macromolecules (2014).
    [26]
    L. H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 48, 847 (2015).
    [27]
    G. D. Phillies, Macromolecules 20, 558 (1987).
    [28]
    A. Michelman-Ribeiro, F. Horkay, R. Nossal, and H. Boukari, Biomacromolecules 8, 1595 (2007).
    [29]
    R. Tuinier and T. H. Fan, Soft Matter 4, 254 (2008).
    [30]
    S. Egorov, J. Chem. Phys. 134, 084903 (2011).
    [31]
    U. Yamamoto and K. S. Schweizer, J. Chem. Phys. 135, 224902 (2011).
    [32]
    X. Y. Lai and N. R. Zhao, Chin. J. Chem. Phys. 26, 163 (2013).
    [33]
    Y. Dong, X. Feng, N. Zhao, and Z. Hou, J. Chem. Phys. 143, 024903 (2015).
    [34]
    J. Liu, Y. Gao, D. Cao, L. Zhang, and Z. Guo, Langmuir 27, 7926 (2011).
    [35]
    J. Liu, D. Cao, and L. Zhang, J. Phys. Chem. C 112, 6653 (2008).
    [36]
    T. K. Patra and J. K. Singh, J. Chem. Phys. 138, 144901 (2013).
    [37]
    J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Phys. Rev. Lett. 112, 108301 (2014).
    [38]
    N. Kikuchi, A. Gent, and J. Yeomans, European Phys. J. E 9, 63 (2002).
    [39]
    N. Kikuchi, J. Ryder, C. Pooley, and J. Yeomans, Phys. Rev. E 71, 061804 (2005).
    [40]
    R. Chang and A. Yethiraj, J. Chem. Phys. 114, 7688 (2001).
    [41]
    H. Tanaka, J. Phys.: Condens. Matter 17, S2795 (2005).
    [42]
    K. Kamata, T. Araki, and H. Tanaka, Phys. Rev. Lett. 102, 108303 (2009).
    [43]
    A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
    [44]
    A. Malevanets and J. Yeomans, EPL 52, 231 (2000).
    [45]
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
    [46]
    G. Gompper, T.Ihle, D. Kroll, and R. Winkler, in Ad-vanced Computer Simulation Approaches for Soft Mat-ter Sciences III, Berlin, Heidelberg: Springer, 1 (2009).
    [47]
    C. C. Huang, R. G. Winkler, G. Sutmann, and G. Gompper, Macromolecules 43, 10107 (2010).
    [48]
    C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys. 14, 6755 (2012).
    [49]
    T. Ihle and D. M. Kroll, Phys. Rev. E 63, 020201 (2001).
    [50]
    A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).
    [51]
    J. Padding and A. Louis, Phys. Rev. Lett. 93, 220601 (2004).
    [52]
    A. Tomilov, A. Videcoq, T. Chartier, T. Ala-Nissilä, and I. Vattulainen, J. Chem. Phys. 137, 014503 (2012).
    [53]
    C. Huang, A. Chatterji, G. Sutmann, G. Gompper, and R. G. Winkler, J. Comput. Phys. 229, 168 (2010).
    [54]
    M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Phys. Rev. E 72, 016701 (2005).

Catalog

    Article Metrics

    Article views (1313) PDF downloads (744) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return