Processing math: 100%

Advanced Search
Xiao-hu Wu, Hua Xie, Zhi-ling Liu, Hai-feng Su, Shui-chao Lin, Zi-chao Tang. A Reflectron Time-of-Flight Mass Spectrometer with a Nano-Electrospray Ionization Source for Study of Metal Cluster Compounds[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 401-406. DOI: 10.1063/1674-0068/29/cjcp1601019
Citation: Xiao-hu Wu, Hua Xie, Zhi-ling Liu, Hai-feng Su, Shui-chao Lin, Zi-chao Tang. A Reflectron Time-of-Flight Mass Spectrometer with a Nano-Electrospray Ionization Source for Study of Metal Cluster Compounds[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 401-406. DOI: 10.1063/1674-0068/29/cjcp1601019

A Reflectron Time-of-Flight Mass Spectrometer with a Nano-Electrospray Ionization Source for Study of Metal Cluster Compounds

More Information
  • Received Date: January 25, 2016
  • Revised Date: February 29, 2016
  • An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-flight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the “ionization” process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2-pyridyl)phenylphosphine, and [Au6Ag2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5-methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi-nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.
  • [1]
    H. Hakkinen, Nat. Chem. 4, 443 (2012).
    [2]
    R. C. Jin, Y. Zhu, and H. F. Qian, Chem. Eur. J. 17, 6584 (2011).
    [3]
    J. P. Wilcoxon and B. L. Abrams, Chem. Soc. Rev. 35, 1162 (2006).
    [4]
    M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).
    [5]
    G. Li, C. J. Zeng, and R. C. Jin, J. Am. Chem. Soc. 136, 3673 (2014).
    [6]
    X. D. Zhang, Z. T. Luo, J. Chen, X. Shen, S. S. Song, Y. M. Sun, S. J. Fan, F. Y. Fan, D. T. Leong, and J. P. Xie, Adv. Mater. 26, 4565 (2014).
    [7]
    Y. S. Chen, H. Choi, and P. V. Kamat, J. Am. Chem. Soc. 135, 8822 (2013).
    [8]
    Z. K. Wu, M. Wang, J. Yang, X. H. Zheng, W. P. Cai, G. W. Meng, H. F. Qian, H. M. Wang, and R. C. Jin, Small 8, 2028 (2012).
    [9]
    Y. Kamei, Y. Shichibu, and K. Konishi, Angew. Chem. Int. Ed. 50, 7442 (2011).
    [10]
    J. Chen, Q. F. Zhang, T. A. Bonaccorso, P. G. Williard, and L. S. Wang, J. Am. Chem. Soc. 136, 92 (2013).
    [11]
    A. Das, T. Li, K. Nobusada, C. J. Zeng, N. L. Rosi, and R. C. Jin, J. Am. Chem. Soc. 135, 18264 (2013).
    [12]
    H. Y. Yang, Y. Wang, J. Z. Yan, X. Chen, X. Zhang, H. Häkkinen, and N. F. Zheng, J. Am. Chem. Soc. 136, 7197 (2014).
    [13]
    P. Maity, S. Takano, S. Yamazoe, T. Wakabayashi, and T. Tsukuda, J. Am. Chem. Soc. 135, 9450 (2013).
    [14]
    K. R. Flower, R. G. Pritchard, and A. T. McGown, Angew. Chem. Int. Ed. 45, 6535 (2006).
    [15]
    H. F. Qian, Y. Zhu, and R. C. Jin, Proc. Natl. Acad. Sci. USA 109, 696 (2012).
    [16]
    Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, and T. Tsukuda, J. Am. Chem. Soc. 126, 6518 (2004).
    [17]
    P. R. Nimmala and A. Dass, J. Am. Chem. Soc. 133, 9175 (2011).
    [18]
    H. Y. Yang, Y. Wang, J. Lei, L. Shi, X. H. Wu, V. Mäkinen, S. C. Lin, Z. C. Tang, J. He, H. Hakkinen, L. S. Zheng, and N. F. Zheng, J. Am. Chem. Soc. 135, 9568 (2013).
    [19]
    M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, and M. B. Alice, J. Chem. Phys. 49, 2240 (1968).
    [20]
    C. M. Whitehouse, R. N. Dreyer, M. Yamashita, and J. B. Fenn, Anal. Chem. 57, 675 (1985).
    [21]
    J. B. Fenn, J. Am. Soc. Mass Spectrom. 4, 524 (1993).
    [22]
    M. S. Wilm and M. Mann, Int. J. Mass Spectrom. Ion Proc. 136, 167 (1994).
    [23]
    M. Wilm and M. Mann, Anal. Chem. 68, 1 (1996).
    [24]
    A. N. Verentchikov, W. Ens, and K. G. Standing, Anal. Chem. 66, 126 (1994).
    [25]
    X. K. Wan, Z. W. Lin, and Q. M. Wang, J. Am. Chem. Soc. 134, 14750 (2012).
    [26]
    J. H. Jia and Q. M. Wang, J. Am. Chem. Soc. 131, 16634 (2009).
    [27]
    M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, and H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 9157 (2008).
    [28]
    W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
  • Related Articles

    [1]Cun-zhi Sun, Rong-dun Hong, Xia-ping Chen, Jia-fa Cai, Zheng-yun Wu. Ultraviolet Optical Properties and Structural Characteristics of Radio Frequency-Deposited HfO2 Thin Films[J]. Chinese Journal of Chemical Physics , 2018, 31(6): 813-817. DOI: 10.1063/1674-0068/31/cjcp1806140
    [2]Guohua Cao. Biomedical X-ray Imaging Enabled by Carbon Nanotube X-ray Sources[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 529-536. DOI: 10.1063/1674-0068/31/cjcp1806132
    [3]Jiang Zhang, Xi Chen. Fabrication and Growth Mechanism of Bamboo-structured Boron Nitride Nanotubes with Thorn-Like Morphology[J]. Chinese Journal of Chemical Physics , 2014, 27(5): 555-558. DOI: 10.1063/1674-0068/27/05/555-558
    [4]Ghulam Murtaza Rai, Muhammad Azhar Iqbal, Yong-bing Xu, Iain Gordon Will, Qasim Mahmood. Room Temperature Ferromagnetism in Ga1-xHoxN (x=0.0 and 0.05) Diluted Magnetic Semiconductor Thin Films[J]. Chinese Journal of Chemical Physics , 2012, 25(3): 313-317. DOI: 10.1088/1674-0068/25/03/313-317
    [5]Yu-chao Zhao, Zeng-guang Zhang, Jin-yun Yuan, Hong-guang Xu, Wei-jun Zheng. Modification of Reflectron Time-of-Flight Mass Spectrometer for Photodissociation of Mass-Selected Cluster Ions[J]. Chinese Journal of Chemical Physics , 2009, 22(6): 655-662. DOI: 10.1088/1674-0068/22/06/655-662
    [6]Fu-dong Wang, Tao Wang, An-an Wu, Lan Ding, Han-qing Wang. X-ray and DFT Study of Glaucocalyxin A Compound with Cytotoxic Activity[J]. Chinese Journal of Chemical Physics , 2009, 22(3): 275-284. DOI: 10.1088/1674-0068/22/03/275-284
    [7]Hui-qing Xue, Hui-feng Xue, Biao Wu, Han-qing Wang, Xue-lei Xin, Shui-xian Wu. Crystal Structure of 8β-Hydroxyeremophil-7(11)-ene-12,8α(4β,6α)-diolide[J]. Chinese Journal of Chemical Physics , 2006, 19(6): 519-522. DOI: 10.1360/cjcp2006.19(6).519.4
    [8]Zeng Yi, Pan Fusu, Yu Zuxing, Xiong Rui, Shi Jing. (14-x)SrCO3-xCaCO3-24CuO System to Synthesize Spin-ladder Compounds Sr14-xCaxCu24O41 Using DTA and XRD Techniques[J]. Chinese Journal of Chemical Physics , 2005, 18(4): 614-618. DOI: 10.1088/1674-0068/18/4/614-618
    [9]Luo Xin, Liu Shixiong. X-ray Powder Diffraction Patterns in situ Magnetic Field[J]. Chinese Journal of Chemical Physics , 2004, 17(2): 186-190. DOI: 10.1088/1674-0068/17/2/186-190
    [10]Xing Xiaopeng, Tian Zhixin, Liu Peng, Gao Zhen, Zhu Qihe, Tang Zichao. The Laser Refiectron Time-of-flight Mass Spectrometer Used on Cluster Research[J]. Chinese Journal of Chemical Physics , 2002, 15(2): 83-87. DOI: 10.1088/1674-0068/15/2/83-87

Catalog

    Article Metrics

    Article views (1432) PDF downloads (607) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return