Advanced Search
Rong-dan Yuan, Jia-dan Xue, Xu-ming Zheng. Structural Dynamics of Phenyl Azide in Light-Absorbing Excited States:Resonance Raman and Quantum Mechanical Calculation Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 21-30. DOI: 10.1063/1674-0068/29/cjcp1510213
Citation: Rong-dan Yuan, Jia-dan Xue, Xu-ming Zheng. Structural Dynamics of Phenyl Azide in Light-Absorbing Excited States:Resonance Raman and Quantum Mechanical Calculation Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 21-30. DOI: 10.1063/1674-0068/29/cjcp1510213

Structural Dynamics of Phenyl Azide in Light-Absorbing Excited States:Resonance Raman and Quantum Mechanical Calculation Study

More Information
  • Received Date: October 14, 2015
  • Revised Date: December 07, 2015
  • The excited state structural dynamics of phenyl azide (PhN3) after excitation to the light absorbing S2(A'), S3(A'), and S6(A') states were studied using the resonance Raman spectroscopy and complete active space self-consistent field calculations. The vibrational spectra and the UV absorption bands were assigned on the basis of the Fourier transform (FT)-Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2(A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and N7=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1(1)/S2S1(2).
  • [1]
    W. Lwowski Ed., Nitrenes, Wiley:New York, (1970).
    [2]
    D. S. Breslow, Azides and Nitrenes, E. F. V. Scriven, ed., Orlando, FL:Academic Press, 491(1984).
    [3]
    H. Bayley, Photogenerated Reagents in Biochemistry and Molecular Biology, New York:Elsevier Press, (1983).
    [4]
    S. A. Fleming, Tetrahedron, 51, 12479(1995).
    [5]
    M. F. Budyka, N. V. Biktimirova, T. N. Gavrishova, and O. D. Russ. Laukhina, J. Phys. Chem. 79, 1666(2005).
    [6]
    R. F. Jenkins, W. H. Waddell, and H. W. Richter, J. Am. Chem. Soc. 109, 1583(1987).
    [7]
    M. W. Geiger, M. M. Elliot, V. D. Karacostas, T. J. Moricone, J. B. Salmon, V. L. Sideli, and M. A. St. Onge, Photochem. Photobiol. 40, 545(1984).
    [8]
    G. Burdzinski, J. C. Hackett, J. Wang, T. L. Gustafson, C. M. Hadad, and M. S. Platz, J. Am. Chem. Soc. 128, 13402(2006)
    [9]
    V. Voskresenska, R. M. Wilson, M. Panov, A. N. Tarnovsky, J. A. Krause, S. Vyas, A. H. Winter, and C. M. Hadad, J. Am. Chem. Soc. 131, 11535(2009)
    [10]
    X. Zheng, Y. L. Li, and D. L. Phillips, J. Phys. Chem. A. 108, 8032(2004).
    [11]
    A. B. Myers, in Laser Techniques in Chemistry, A. B. Myers and T. R. Rizzo Eds., New York:Wiley, 325(1995).
    [12]
    A. B. Myers and R. A. Mathies, in Biological Applications of Raman Spectroscopy, T. G. Spiro Ed., New York:Wiley, 2(1987).
    [13]
    R. Ouillon and S. Adam, J. Raman Spectrosc. 12, 281(1982).
    [14]
    F. J. Purcell, R. Kaminski, and E. Russavage, Appl. Spectrosc. 34, 323(1980).
    [15]
    J. R. Scherer and S. Kint, Appl. Optics. 9, 1615(1970).
    [16]
    A. B. Myers, B. Li, and X. Ci, J. Chem. Phys. 89, 1876(1988).
    [17]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, Ö. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.02, Pittsburgh, PA:Gaussian Inc., (2003).
    [18]
    M. H. Jamróz, Vibrational Energy Distribution Analysis:VEDA 4 Program, Warsaw, (2004).
  • Related Articles

    [1]Huifang Ma, Yanzhao Yang, Heng Jing, Wanshun Jiang, Wenyue Guo, Hao Ren. Semi-Empirical Model to Retrieve Finite Temperature Terahertz Absorption Spectra using Morse Potential[J]. Chinese Journal of Chemical Physics , 2023, 36(1): 15-24. DOI: 10.1063/1674-0068/cjcp2202032
    [2]Yi-ping Wu, Bian-bian Wu, Xiang-hu Tang. Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 166-172. DOI: 10.1063/1674-0068/30/cjcp1612233
    [3]Xun Hong, Guan-zhong Wang, Ying Wang, Wei Zhu, Xiao-shuang Shen. Controllable Electrochemical Synthesis of Silver Dendritic Nanostructures and Their SERS Properties[J]. Chinese Journal of Chemical Physics , 2010, 23(5): 596-602. DOI: 10.1088/1674-0068/23/05/596-602
    [4]Xiao-shuang Shen, Guan-zhong Wang, Xun Hong, Wei Zhu. Shape-Controlled Synthesis of Palladium Nanoparticles and Their SPR/SERS Properties[J]. Chinese Journal of Chemical Physics , 2009, 22(4): 440-446. DOI: 10.1088/1674-0068/22/04/440-446
    [5]Fang Jinghuai, Huang Yunxia, Li Xia, Dou Xiaoming. Surface-enhanced Raman Scattering Activity Study of Molecule in Mixed Negatively and Positively Charged Silver Colloidal Solution[J]. Chinese Journal of Chemical Physics , 2004, 17(6): 735-740. DOI: 10.1088/1674-0068/17/6/735-740
    [6]Liu Xia, Chen Dongming, He Tianjing, Liu Fanchen. Effect of CTAB on the Surface-Enhanced Raman Scattering of Tetrakis(4-N-methylpyridyl)porphyrin[J]. Chinese Journal of Chemical Physics , 2003, 16(3): 176-180. DOI: 10.1088/1674-0068/16/3/176-180
    [7]Si Minzhen, Wu Rongguo, Zhang Pengxiang. Quenching and Enhancement of Fluorescence of Dye Molecule on Negative and Positive Colloid Silver Particles[J]. Chinese Journal of Chemical Physics , 2002, 15(5): 346-350. DOI: 10.1088/1674-0068/15/5/346-350
    [8]Si Minzhen, Wu Rongguo, Zhang Pengxiang. Adsorption Orientation of Fuchsine Basic on Negatively and Positively Charged Silver Colloid Particles[J]. Chinese Journal of Chemical Physics , 2001, 14(6).
    [9]Shen Dejun, Zhang Chaoping. Investigation of Colloid Character for Interaction Gelatin with Silver[J]. Chinese Journal of Chemical Physics , 2001, 14(1): 100-106. DOI: 10.1088/1674-0068/14/1/100-106
    [10]Liu Xia, He Tianjing, Liu Fanchen, Chen Dongming. Preparation and Spectroscopic Studies of Silver Nanorod Colloids[J]. Chinese Journal of Chemical Physics , , (1): 81-86.

Catalog

    Article Metrics

    Article views (1298) PDF downloads (664) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return