Advanced Search
Ming-qiang Huang, Shun-you Caia, Ying-min Liao, Wei-xiong Zhao, Chang-jin Hu, Zhen-ya Wang, Wei-jun Zhang. Theoretical Studies on Mechanism and Rate Constant of Gas Phase Hydrolysis of Glyoxal Catalyzed by Sulfuric Acid[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 335-343. DOI: 10.1063/1674-0068/29/cjcp1509193
Citation: Ming-qiang Huang, Shun-you Caia, Ying-min Liao, Wei-xiong Zhao, Chang-jin Hu, Zhen-ya Wang, Wei-jun Zhang. Theoretical Studies on Mechanism and Rate Constant of Gas Phase Hydrolysis of Glyoxal Catalyzed by Sulfuric Acid[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 335-343. DOI: 10.1063/1674-0068/29/cjcp1509193

Theoretical Studies on Mechanism and Rate Constant of Gas Phase Hydrolysis of Glyoxal Catalyzed by Sulfuric Acid

More Information
  • Received Date: September 20, 2015
  • Revised Date: December 03, 2015
  • The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the ve di erent reaction paths are consid-ered corresponding to HCOCHO+H2O, HCOCHO+H2O H2O, HCOCHO H2O+H2O, HCOCHO+H2O H2SO4 and HCOCHO H2O+H2SO4. Results show that H2SO4 has a strong catalytic ability, which can signi cantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6-311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11cm3/(molecule s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11cm3/(molecule s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi-tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer
  • [1]
    A. Karpfen, Comput. Theor. Chem. 1061, 60 (2015).
    [2]
    S. Rossignol, K. Z. Aregahegn, L. Tinel, L. Fine, B. Nozi ere, and C. George, Environ. Sci. Technol. 48, 3218 (2014).
    [3]
    C. J. Kampf, R. Jakob, and T. Ho mann, Atmos. Chem. Phys. 12, 6323 (2012).
    [4]
    M. Q. Huang, W. J. Zhang, Z. Y. Wang, L. Fang, R. H. Kong, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 24, 672 (2011).
    [5]
    J. Lockhart, M. Blitz, D. Heard, P. Seakins, and R. Shannon, J. Phys. Chem. A 117, 11027 (2013).
    [6]
    J. Tadic, G. K. Moortgat, and K. Wirtz, J. Photochem. Photobiol. A 177, 116 (2006).
    [7]
    T. Schaefer, D. van Pinxteren, and H. Herrmann, Environ. Sci. Technol. 49, 343 (2015) .
    [8]
    E. Avzianova and S. D. Brooks, Spectrochim. Acta A Mol. Biomol. Spectrosc. 101, 40 (2013).
    [9]
    D. J. Straub, J. W. Hutchings, and P. Herckes, Atmos. Environ. 47, 195 (2012).
    [10]
    A. K. Y. Lee, K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio, A. M. Macdonald, and J. P. D. Abbatt, Atmos. Chem. Phys. 12, 7103 (2012).
    [11]
    M. E. Gomez, Y. Lin, S. Guo, and R. Zhang, J. Phys. Chem. A 119, 4457 (2015).
    [12]
    A. J. Sumner, J. L. Woo, and V. F. McNeill, Environ. Sci. Technol. 48, 11919 (2014).
    [13]
    A. K. Y. Lee, R. Zhao, R. Li, J. Liggio, S. M. Li, and J. P. D. Abbatt, Environ. Sci. Technol. 47, 12819 (2013).
    [14]
    M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger, Science 303, 1659 (2004).
    [15]
    S. Wolfe, C. K. Kim, K. Yang, N. Weinberg, and Z. Shi, J. Am. Chem. Soc. 117, 4240 (1995).
    [16]
    S. Boöhm, D. Antipova, and J. Kuthan, Int. J. Quantum Chem. 58, 47 (1996).
    [17]
    J. Kua, S. W. Hanley, and D. O. De Haan, J. Phys. Chem. A 112, 66 (2008).
    [18]
    B. Long, X. F. Tan, C. R. Chang, W. X. Zhao, Z. W. Long, D. S. Ren, and W. J. Zhang, J. Phys. Chem. A 117, 5106 (2013).
    [19]
    M. K. Hazra, J. S. Francisco, and A. Sinha, J. Phys. Chem. A 117, 11704 (2013).
    [20]
    L. Vereeckenand J. S. Francisco, Chem. Soc. Rev. 41, 6259 (2012).
    [21]
    M. K. Hazra, J. S. Francisco, and A. Sinha, J. Phys. Chem. A 118, 4095 (2014).
    [22]
    M. Torrent-Sucarrat, J. S. Francisco, and J. M. Anglada, J. Am. Chem. Soc. 134, 20632 (2012).
    [23]
    M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R. L. Mauldin, A. P. Hyvärinen, H. Lihavainen, and M. Kulmala, Science 327, 1243 (2010).
    [24]
    J. Elm, M. Bilde, and K. V. Mikkelsen, J. Chem. Theory Comput. 8, 2071 (2012).
    [25]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 Revision, Wallingford CT: Gaussian, Inc., (2009).
    [26]
    K. Fukui, Acc. Chem. Res. 14, 363 (1981).
    [27]
    G. D. Purvis Iii and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
    [28]
    Y. P. Liu, G. C. Lynch, T. N. Truong, D. H. Lu, D. G. Truhlar, and B. C. Garrett, J. Am. Chem. Soc. 115, 2408 (1993).
    [29]
    C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).
    [30]
    D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35, 159 (1984).
    [31]
    J. C. Keck, J. Chem. Phys. 32, 1035 (1960).
    [32]
    C. Eckart, Phys. Rev. 35, 1303 (1930).
    [33]
    M. Q. Huang, Y. M. Liao, Z. Y. Wang, L. Q. Hao, and W. J. Zhang, Comput. Theor. Chem. 1037, 63 (2014).
    [34]
    M. Q. Huang, Z. Y. Wang, L. Q. Hao, and W. J. Zhang, Comput. Theor. Chem. 996, 44 (2012).
    [35]
    V. H. Uc, J. R. Alvarez-Idaboy, A. Galano, I. Garcia-Cruz, and A. Vivier-Bunge, J. Phys. Chem. A 110, 10155 (2006).
    [36]
    S. Zhang and T. N. Truong, VKLab Version 1.0, Salt Lake City USA: University of Utah, (2001).
    [37]
    M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, Science 298, 814 (2002).
    [38]
    J. L. Axson, K. Takahashi, D. O. De Haan, and V. Vaida, Proc. Natl. Acad. Sci. USA 107, 6687 (2010).
    [39]
    T. F. Kahan, T. K. Ormond, G. B. Ellison, and V. Vaida, Chem. Phys. Lett. 565, 1 (2013).
    [40]
    D. J. Donaldson and V. Vaida, Chem. Rev. 106, 1445 (2006).
    [41]
    D. Cli ord, T. Bartel-Rausch, and D. J. Donaldson, Phys. Chem. Chem. Phys. 9, 1362 (2007).
    [42]
    K. J. Feierabend, L. Zhu, R. K. Talukdar, and J. B. Burkholder, J. Phys. Chem. A 112, 73 (2007).
    [43]
    C. N. Plum, E. Sanhueza, R. Atkinson, W. P. L. Carter, and J. N. Pitts, J. Environ. Sci. Technol. 17, 479 (1983).
    [44]
    A. Galano, M. Narciso-Lopez, and M. Francisco-Marquez, J. Phys. Chem. A 114, 5796 (2010).
    [45]
    T. Petäjä, R. L. III Mauldin, E. Kosciuch, J. McGrath, T. Nieminen, P. Paasonen, M. Boy, A. Adamov, T. Kotiaho, and M. Kulmala, Atmos. Chem. Phys. 9, 7435 (2009).

Catalog

    Article Metrics

    Article views (1444) PDF downloads (755) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return