Advanced Search
Xin Chen, Zi-jing Lin. Performances of Five Representative Force Fields on Gaseous Amino Acids with Di erent Termini[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 179-186. DOI: 10.1063/1674-0068/29/cjcp1507153
Citation: Xin Chen, Zi-jing Lin. Performances of Five Representative Force Fields on Gaseous Amino Acids with Di erent Termini[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 179-186. DOI: 10.1063/1674-0068/29/cjcp1507153

Performances of Five Representative Force Fields on Gaseous Amino Acids with Di erent Termini

More Information
  • Received Date: July 14, 2015
  • Revised Date: September 07, 2015
  • There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help the selection of force fields, the performances of five repre-sentative force fields for gaseous neutral, protonated, deprotonated and capped amino acids are systematically examined and compared. The tested properties include relative conforma-tional energies, energy differences between cis and trans structures, the number and strength of predicted hydrogen bonds, and the quality of the optimized structures. The results of BHandHLYP/6-311++G(d,p) are used as the references. GROMOS53A6 and ENCADS are found to perform poorly for gaseous biomolecules, while the performance of AMBER99SB, CHARMM27 and OPLSAA/L are comparable when applicable. Considering the general availability of the force field parameters, CHARMM27 is the most recommended, followed by OPLSAA/L, for the study of biomolecules in gas phase.
  • [1]
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
    [2]
    M. Karplus and D. L. Weaver, Nature 260, 404 (1976).
    [3]
    D. J. Price and C. L. Brooks, J. Comput. Chem. 23, 1045 (2002).
    [4]
    A. D. Mackerell, J. Comput. Chem. 25, 1584 (2004).
    [5]
    A. Liwo, C. Czaplewski, S. O ldziej, and H. A. Scheraga, Curr. Opin. Biotechnol. 18, 134 (2008).
    [6]
    K. A. Beauchamp, Y. S. Lin, R. Das, and V. S. Pande, J. Chem. Theory Comput. 8, 1409 (2012).
    [7]
    K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, Plos One 7, e32131 (2012).
    [8]
    D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, J. Comput. Chem. 26, 1668 (2005).
    [9]
    B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, and S. Boresch, J. Comput. Chem. 30, 1545 (2009).
    [10]
    M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, Comput. Phys. Commun. 91, 215 (1995).
    [11]
    W. R. Scott, P. H. Hnenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Krger, and W. F. van Gunsteren, J. Phys. Chem. A 103, 3596 (1999).
    [12]
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
    [13]
    J. W. Ponder and D. A. Case, Adv. Protein Chem. 66, 27 (2003).
    [14]
    K. Yang, B. Yang, and Z. Lin, Chin. J. Chem. Phys. 28, 161 (2015).
    [15]
    H. Li, Z. Lin, and Y. Luo, Chem. Phys. Lett. 610, 303 (2014).
    [16]
    H. Li, Z. Lin, and Y. Luo, Chem. Phys. Lett. 608, 398 (2014).
    [17]
    R. Pang and Z. Lin, Chin. J. Chem. Phys. 27, 189 (2014).
    [18]
    H. Li, Z. Lin, and Y. Luo, Chem. Phys. Lett. 598, 86 (2014).
    [19]
    H. Li, Z. Lin, and Y. Luo, Chin. J. Chem. Phys. 25, 681 (2012).
    [20]
    H. Chen, Y.Wang, X. Chen, and Z. Lin, Chin. J. Chem. Phys. 25, 77 (2012).
    [21]
    A. D. Mackerell and N. K. Banavali, J. Comput. Chem. 21, (2000).
    [22]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,  O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09: User's Refer-ence, Wallingford CT, USA: Gaussian Inc. 105 (2009).
    [23]
    C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10269 (1993).
    [24]
    A. D. MacKerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
    [25]
    R. V. Devi, S. S. Sathya, and M. S. Coumar, Appl. Soft Comput. 27, 543 (2015).
    [26]
    W. Yu, L. Liang, Z. Lin, S. Ling, M. Haranczyk, and M. Gutowski, J. Comput. Chem. 30, 589 (2009).
    [27]
    V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins: Struct. Funct. Bioinformatics 65, 712 (2006).
    [28]
    C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, J. Comput. Chem. 25, 1656 (2004).
    [29]
    M. Levitt, J. Mol. Biol. 168, 595 (1983).
    [30]
    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).
    [31]
    W. Yu, Z. Wu, H. Chen, X. Liu, A. D. MacKerell Jr., and Z. Lin, J. Phys. Chem. B 116, 2269 (2012).
    [32]
    J. Benesty, J. Chen, Y. Huang, and I. Cohen, Pearson Correlation Coefficient, in: Noise Reduction in Speech Processing, Berlin: Springer, 1-4 (2009).
    [33]
    C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, (1974).
    [34]
    N. J. Nagelkerke, Biometrika 78, 691 (1991).
    [35]
    J. E. Kerrigan, Biochemistry 32, 13123 (1993).
    [36]
    B. Hess, D. van Der Spoel, and E. Lindahl, Netherland: University of Groningen, (2010).
  • Related Articles

    [1]Yani Chen, Wanqing Wei, Yanzi Zhou, Daiqian Xie. The Role of Hydrogen Bond in Catalytic Triad of Serine Proteases[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 797-804. DOI: 10.1063/1674-0068/cjcp2110194
    [2]Da-qiao Hu, Wen-jun Wang, Rong-rong Wang, Bo Yang, Bo Yu. Hydrogen Bond Effect in Nonlinear Optical Properties of Azobenzene Derivatives[J]. Chinese Journal of Chemical Physics , 2015, 28(5): 645-649. DOI: 10.1063/1674-0068/28/cjcp1502073
    [3]Yu-jie Wu, Xiao-ran Zhao, Hai-yue Gao, Wei-jun Jin. Triangular Halogen Bond and Hydrogen Bond Supramolecular Complex Consisting of Carbon Tetrabromide, Halide, and Solvent Molecule: A Theoretical and Spectroscopic Study[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 265-273. DOI: 10.1063/1674-0068/27/03/265-273
    [4]Chao Sun, Jie Liu, Wan-zhen Liang, Yi Zhao. Theoretical Insights into Intermolecular Hydrogen-Bonding Strengthening in Fluorenone-Methanol Complexes Induced by Electronic Excitation and Bulk Solvent Effect (cited: 1)[J]. Chinese Journal of Chemical Physics , 2013, 26(6): 617-626. DOI: 10.1063/1674-0068/26/06/617-626
    [5]Xiao-ran Zhao, Xue Pang, Xiao-qing Yan, Wei-jun Jin. Halogen Bonding or Hydrogen Bonding between 2,2,6,6-Tetramethyl-piperidine-noxyl Radical and Trihalomethanes CHX3 (X=Cl, Br, I)[J]. Chinese Journal of Chemical Physics , 2013, 26(2): 172-180. DOI: 10.1063/1674-0068/26/02/172-180
    [6]Yu-ling Chu, Zhong Yang, Zhe-feng Pan, Jing Liu, Yue-yi Han, Yong Ding, Peng Song. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density FunctionalTheory[J]. Chinese Journal of Chemical Physics , 2012, 25(6): 654-658. DOI: 10.1088/1674-0068/25/06/654-658
    [7]Qin He, Jing Yang, Xiang-jun Meng. Hydrogen Bonding Character Between the Glycine and BF4-[J]. Chinese Journal of Chemical Physics , 2009, 22(5): 517-522. DOI: 10.1088/1674-0068/22/05/517-522
    [8]Man-ping Ye, Heng Li, Qing-li Zhang, Yu-xiang Weng, Xiang-gang Qiu. Intermolecular Hydrogen Bonds Formed Between Amino Acid Molecules in Aqueous Solution Investigated by Temperature-jump NanosecondTime-resolved Transient Mid-IR Spectroscopy[J]. Chinese Journal of Chemical Physics , 2007, 20(4): 461-467. DOI: 10.1088/1674-0068/20/04/461-467
    [9]Huang Fanqqian, Li Quan. Structure and Properties of the Hydrogen Bond Complex Between Pyridazine and Water[J]. Chinese Journal of Chemical Physics , 2005, 18(6): 957-961. DOI: 10.1088/1674-0068/18/6/957-961
    [10]Yu Zhangyu, Guo Daojun, Wang Hanqing. Theoretical Study on the Hydrogen Bond Interaction between Adrenaline and Dimethyl Sulphoxide[J]. Chinese Journal of Chemical Physics , 2004, 17(2): 149-154. DOI: 10.1088/1674-0068/17/2/149-154
  • Cited by

    Periodical cited type(1)

    1. Yang, B., Liu, S., Lin, Z. Computational study on single molecular spectroscopy of tyrosin-glycine, tryptophane-glycine and glycine-tryptophane. Scientific Reports, 2017, 7(1): 15869. DOI:10.1038/s41598-017-16234-3

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1083) PDF downloads (767) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return