Advanced Search
Qian Yao, Zhe Tang, Jian-hua Guo, Ying Zhang, Qing-xiang Guo. Effect of Catalyst Properties on Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol[J]. Chinese Journal of Chemical Physics , 2015, 28(2): 209-216. DOI: 10.1063/1674-0068/28/cjcp1409167
Citation: Qian Yao, Zhe Tang, Jian-hua Guo, Ying Zhang, Qing-xiang Guo. Effect of Catalyst Properties on Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol[J]. Chinese Journal of Chemical Physics , 2015, 28(2): 209-216. DOI: 10.1063/1674-0068/28/cjcp1409167

Effect of Catalyst Properties on Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol

More Information
  • Received Date: September 29, 2014
  • The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst properties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 oC. A series of catalysts were prepared and characterized by BET, XRD, and NH3-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin polymerization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acidity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.
  • Related Articles

    [1]Xin-hua Gao, Qing-xiang Ma, Tian-sheng Zhao, Jun Bao, Noritatsu Tsubaki. Recent Advances in Multifunctional Capsule Catalysts in Heterogeneous Catalysis[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 393-403. DOI: 10.1063/1674-0068/31/cjcp1805129
    [2]Qing-yun Wu, Long-long Ma, Jin-xing Long, Ri-yang Shu, Qi Zhang, Tie-jun Wang, Ying Xu. Depolymerization of Organosolv Lignin over Silica-alumina Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 474-480. DOI: 10.1063/1674-0068/29/cjcp1601017
    [3]Xiao-feng Cao, Qi Zhang, Dong Jiang, Qi-ying Liu, Long-long Ma, Tie-jun Wang, De-bao Li. Sorbitol Hydrogenolysis to Glycols over Baisic Additive Promoted Ni-based Catalysts[J]. Chinese Journal of Chemical Physics , 2015, 28(3): 338-344. DOI: 10.1063/1674-0068/28/cjcp1501007
    [4]Zhao-xia Zhang, Pei-yan Bi, Pei-wen Jiang, Quan-xin Li. Conversion of Bio-syngas to Liquid Hydrocarbon over CuCoMn-Zeolite Bifunctional Catalysts[J]. Chinese Journal of Chemical Physics , 2014, 27(5): 573-581. DOI: 10.1063/1674-0068/27/05/573-581
    [5]Zhao-xia Zhang, Pei-yan Bi, Pei-wen Jiang, Quan-xin Li. Effect of Surfactant-Induced Modifications on CuCoMn Catalysts for Higher Alcohol Synthesis[J]. Chinese Journal of Chemical Physics , 2014, 27(4): 450-456. DOI: 10.1063/1674-0068/27/04/450-456
    [6]Wei-wei Huang, Fei-yan Gong, Qi Zhai, Quan-xin Li. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts[J]. Chinese Journal of Chemical Physics , 2012, 25(4): 441-447. DOI: 10.1088/1674-0068/25/04/441-447
    [7]Fu-cheng Shi, Wen-dong Wang, Wei-xin Huang. Bifunctional TiO2 Catalysts for Efficient Cr(VI) Photoreduction Under Solar Light Irradiation Without Addition of Acids[J]. Chinese Journal of Chemical Physics , 2012, 25(2): 214-218. DOI: 10.1088/1674-0068/25/02/214-218
    [8]Min Yang, Helmut Papp. Characterization and Catalytic Behavior of Nano Pt/MgO Catalysts[J]. Chinese Journal of Chemical Physics , 2007, 20(6): 690-696. DOI: 10.1088/1674-0068/20/06/690-696
    [9]Ding Pei, Chao Mingju, Liang Erjun, Guo Xinyong, Du Zuliang. Effect of Different Catalysts on Growth of CNx Nanotubes by Thermal Decomposition[J]. Chinese Journal of Chemical Physics , 2005, 18(3): 433-438. DOI: 10.1088/1674-0068/18/3/433-438
    [10]Tian Ruifen, Shan Shaochun, Gao Feng, Hao Liqing, Zhuang Shuxian. The Effect of Zirconia on the Performance of Cu-Cr Catalyst for Low Temperature Methanol Synthesis Slurry Phase[J]. Chinese Journal of Chemical Physics , 2005, 18(2): 279-283. DOI: 10.1088/1674-0068/18/2/279-283
  • Cited by

    Periodical cited type(10)

    1. Ma, Q., Chen, X., Li, C. et al. Transformation of lignin into value-added products via thermal cracking, electrolysis and photolysis. Advanced Composites and Hybrid Materials, 2024, 7(6): 198. DOI:10.1007/s42114-024-01008-z
    2. Fang, J., Liu, Z., Luan, H. et al. Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions. Renewable Energy, 2021. DOI:10.1016/j.renene.2020.11.033
    3. Omar, S., Yang, Y., Wang, J. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids. Frontiers of Chemical Science and Engineering, 2021, 15(1): 4-17. DOI:10.1007/s11705-020-1933-x
    4. Han, Y., Pires, A.P.P., Garcia-Perez, M. Co-hydrotreatment of the Bio-oil Lignin-Rich Fraction and Vegetable Oil. Energy and Fuels, 2020, 34(1): 516-529. DOI:10.1021/acs.energyfuels.9b03344
    5. Zhang, Y.-H., Fan, M.-H., Chang, R. et al. Production of Benzoic Acid through Catalytic Transformation of Renewable Lignocellulosic Biomass. Chinese Journal of Chemical Physics, 2017, 30(5): 588-594. DOI:10.1063/1674-0068/30/cjcp1703047
    6. Lian, X., Xue, Y., Zhao, Z. et al. Progress on upgrading methods of bio-oil: A review. International Journal of Energy Research, 2017, 41(13): 1798-1816. DOI:10.1002/er.3726
    7. Liu, X., Jia, W., Xu, G. et al. Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5(10): 8594-8601. DOI:10.1021/acssuschemeng.7b01047
    8. Wu, X.-P., Fan, M.-H., Li, Q.-X. Production of Benzene from Lignin through Current Enhanced Catalytic Conversion. Chinese Journal of Chemical Physics, 2017, 30(4): 479-486. DOI:10.1063/1674-0068/30/cjcp1603052
    9. Jin, F., Fan, M.-H., Jia, Q.-F. et al. Synthesis of Cumene from Lignin by Catalytic Transformation. Chinese Journal of Chemical Physics, 2017, 30(3): 348-356. DOI:10.1063/1674-0068/30/cjcp1703038
    10. Zhai, Y., Li, C., Xu, G. et al. Depolymerization of lignin: Via a non-precious Ni-Fe alloy catalyst supported on activated carbon. Green Chemistry, 2017, 19(8): 1895-1903. DOI:10.1039/c7gc00149e

    Other cited types(0)

Catalog

    Article Metrics

    Article views (2472) PDF downloads (1605) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return