2015 Vol. 28, No. 5

Content
Content
2015, 28(5): 0-0.
Article
Two-dimensional electron density map (2D map) of binding energy and relative azimuthal angle (i.e., momentum) for the outer-valence molecular orbitals of SF6 has been measured by a highly sensitive electron momentum spectrometer with noncoplanar symmetric geometry at the impact energy of 1.2 keV plus binding energy. The experimental electron momentum profiles for the relevant molecular orbitals have been extracted from the 2D map and interpreted on the basis of the quantitative calculations using the density functional theory with B3LYP hybrid functional. For the outermost F2p nonbonding orbitals of SF6, the interference patterns are clearly observed in the ratios of the electron momentum profiles of molecular orbitals to that of atomic F2p orbital.
The excited state intra-molecular proton transfer dynamics of 1-hydroxyanthraquinone in solution are investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. Two characteristic bands of excited state absorption and stimu-lated emission are observed in transient absorption spectra with the excitation by the pump wavelength of 400 nm. From the delayed stimulated emission signal, the time scale of the intra-molecular proton transfer is determined to be about 32 fs. The quantum chemistry calculations show that the molecular orbits and the order of the S2 and S1 states are rever-sal and a conical intersection is demonstrated to exist along the proton transfer coordinate. After proton transfer, the second excited state of tautomer populated via the conical intersection undergoes the internal conversion with ~200 fs and the following intermolecular energy relaxation with ~16 ps. The longer component 300 ps can be explained in terms of the relaxation from excited-state tautomer to its ground state. From our observations, two proton transfer pathways via a conical intersection are proposed and the dominated one preserves the molecular orbits.
The pursuit of nanoscale photonics and molecular optoelectronics has stimulated a lot of interests in scanning tunneling microscope (STM) induced molecular emission. In this work, we have introduced a full quantum mechanical approach instead of the previous semiclassical theory to consider the quantized surface plasmon modes in this system. By considering the mutual interactions between a single molecule and the quantized surface plasmon, we have studied the molecular electroluminescence from STM tunnel junctions. Due to the coupling to the surface plasmons, the spontaneous emission rate and the fluorescence intensity of themolecule are both enormously enhanced. In particular, we show that when the radiative decay rate becomes comparable to the vibrational damping rate, hot-electroluminescence can be observed. All these findings are believed to be instructive for further developments of both molecular electronics and photonics.
The conjugation length-dependent nonlinear optical properties of fluorenone-based linear conjugated oligomers have been investigated by experimental and theoretical methods. In-frared spectra and the steady-state absorption spectra show that the increase of conjugated unit could enhance the stretching vibration peaks of C=C and lead to a red-shift of the absorption peaks. Meanwhile, the two-photon fluorescence (TPF) intensity is gradually en-hanced with the increase of excitation energy, and the TPF effciency is obviously higher after the introduction of fluorene-ethylene units. The sum-over-states approach was used to model the two-photon absorption (TPA) cross-sections of oligomers, and the theoretical values agree well with the experimental data obtained from the femtosecond open-aperture z-scan technique. The results exhibit that the extension of conjugated system indeed plays a role in the improvement of TPA behavior of oligomers.
Hydroperoxymethyl formate is a crucial intermediate formed during the low-temperature oxidation of dimethyl ether. The decomposition pathways of HOOCH2OCHO were calculated at QCISD(T)/CBS//B3LYP/6-311++G(d,p) level. The temperature- and pressure-dependent rate constants are computed using microcanonical variational transition state theory coupled with the RRKM/master equation calculations. The calculations show that a pathway leads to the formation of formic acid and a Criegee intermediate does exist, besides the direct dissociation channel to OH and OCH2OCHO radicals. However, formation of the Criegee intermediate has never been considered as an intermediate in dimethyl ether combustion before. The computed rate constants indicate that the newly confirmed pathway is competitive to the direct dissociation route and it is promising to reduce the low-temperature oxidation reactivity. Also electronic effect of groups, e.g. -CHO and O atom, is taken into account. Moreover, Hirshfeld atomic charge and natural bond order analysis are performed to explain this phenomenon from a perspective of chemical nature.
Field emission properties of zigzag graphene nanoribbons terminated with C-O-C ether groups (including cyclic and alternative ether groups at edge, denoted as ZGNR-CE and ZGNR-AE) are studied by adopting a self-consistent method based on density functional theory calculation. The results show that the field emissions of these two nanoribbons are dominated by states around Brillouin zone center and close to Fermi level. Because of lower work function, the ZGNR-CE can produce much stronger emission current than recon-structed zigzag graphene nanoribbon. The ZGNR-AE has nearly completely spin-polarized emission current, although its emission current is not strong enough. It is also found that under the lower E-field, the uniaxial strain can effectively modulate their emission currents but the spin polarization of ZGNR-AE keeps unchanged with the varied strain. The under-lying mechanisms are revealed by combining the analyses of their work functions and bandstructures with edge dipole model.
The B state excited resonance Raman scattering of tetraoxaporphyrin dication (TOP2+) was theoretically studied with DFT/TDDFT calculations and the sum-over-states approach of polarizability including both the A and B terms contributions. The resonance Raman spectra calculated with PBE1PBE, B3LYP, Cam-B3LYP, and B3LYP-D3 functionals are similar to each other in general, with PBE1PBE and B3LYP being better in reproducing resonance Raman intensities in comparison with the experiment. The calculated relative intensities of the totally symmetric modes are excellently consistent with the experiment. The TDDFT calculations manifested a considerable deformation of the B state along theυ2,υ6, υ7, and υ8 modes, which is responsible for the strong resonance Raman intensities of these modes. The resonance Raman intensities of non-totally symmetric modes were calculated to be weaker than the totally symmetric modes by one or two order of magnitude, whichqualitatively agrees with the experiment. However, the resonance Raman intensity of the υ10 mode (CβCβ stretch, B1g symmetry) predicted by TDDFT calculations is unexpectedly small whereas that of the υ11 mode (symmetric CαCm stretch, B1g symmetry) is too large, which is assumed to be caused by the Jahn-Teller instability for the B state of TOP2+.
Two-dimensional semiconducting materials with moderate band gap and high carrier mobil-ity have a wide range of applications for electronics and optoelectronics in nanoscale. On the basis of first-principles calculations, we perform a comprehensive study on the electronics and optical properties of graphene-like boron phosphide (BP) sheets. The global structure search and first-principles based molecular dynamic simulation indicate that two-dimensional BP sheet has a graphene-like global minimum structure with high stability. BP monolayer is semiconductor with a direct band gap of 1.37 eV, which reduces with the number of layers. Moreover, the band gaps of BP sheets are insensitive to the applied uniaxial strain.= The calculated mobility of electrons in BP monolayer is as high as 106 cm2/(V·s). Lastly, the MoS2/BP van der Waals heterobilayers are investigated for photovoltaic applications, and their power conversion efficiencies are estimated to be in the range of 17.7%-19.7%. This study implies the potential applications of graphene-like BP sheets for electronic and optoelectronic devices in nanoscale.
We present fully differential cross sections (FDCS) within three-body distorted wave (3DW) for the single ionization of He by 3.6 MeV/amu AuQ+ (Q=24, 53) ions. By comparing our calculations with experimental data and other theoretical predictions, we find the cross sections are strongly influenced by highly charged projectile, ejected electron would be “pulled” along in the forward direction. However, all of the theoretical approaches can not display experimental unique forward peak structures in the FDCS.
We study the coherence transfer between two pigments (donor and acceptor) of a dimer interacting with two independent environments. By means of a prior weak measurement on the donor and a post measurement, which is either a reversal measurement or a weak measurement, on the acceptor, we present a scheme to optimally control the transfer of the donor's coherence to the acceptor. We construct explicit relationships for the two measure-ment strengths and the evolution time, by which the coherence degree of the acceptor can approach the maximum value 0.5 at the cost of a decreased probability.
A kind of clay-supported K-Co-Mo catalyst was prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structure was characterized by X-ray diffraction, N2 adsorption-desorption, H2 temperature-programmed reduction, and X-ray photoelectron spectroscopy techniques and its catalytic performance for higher alcohol syn-thesis from syngas was investigated. The active components has a high dispersion on the clay support surface. The increase of the Mo loading promoted reduction of M6+ but had no signi cant in fluence on the reduction of Mo4+ and Co2+ species. After reduction, a kind of lower state Moδ+ (1<δ<4) species was observed on the surface. Compared with the unsupported catalyst, the clay supported K-Co-Mo catalysts showed much higher catalytic performance for alcohol formation. The reason can be explained that the supported catalyst have a high active surface area and the mesoporous structure prolonged the residence time of intermediates for alcohol formation to some extent, which promoted the formation of higher alcohols. The high activity of the catalyst reduced at 773 K may be attributed to the high content of Moδ+ (1<δ<4) species on the surface, which was regarded as the active site for the adsorption of nondissociative CO and responsible for the alcohol formation.
An e ective protocol is presented for the synthesis of Ag@hm-SiO2 yolk/shell nanostructures (YSNs) via a facile “ship-in-a-bottle” method. TEM observations show that the as-obtained Ag@hm-SiO2 YSNs have a single silver core in the interior of hollow mesoporous silica (hm-SiO2) nanospheres, in which the thickness of hm-SiO2 outer shell is about 14 nm and the silver core has an average size of about 43 nm. And the content of silver in Ag@hm-SiO2 YSNs is about 10.29% based on the inductively coupled plasma measurement. The as-synthesized Ag@hm-SiO2 YSNs exhibited signi cantly enhanced catalytic performance compared with the pure Ag nanoparticles toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of Na4.
Vertically aligned multi-walled carbon nanotube arrays grown on quartz substrate are obtained by co-pyrolysis of xylene and ferrocene at 850 oC in a tube furnace. Raman spectroscopy and high resolution transmission electron microscopy measurements show that the single-walled carbon nanotubes are only present on top of vertically aligned multi-walled carbon nanotube arrays. It has been revealed that isolated single-walled carbon nanotubes are only present in those floating catalyst generated materials. It thus suggests that the single-walled carbon nanotubes here are also generated by floating catalyst. Vertically alignedcarbon nanotube arrays on the quartz substrate have shown good orientation and good graphitization. Meanwhile, to investigate the growth mechanism, two bi-layers carbon nan-otube films with di erent thickness have been synthesized and analyzed by Raman spectroscopy. The results show that the two-layer vertically aligned carbon nanotube films grow “bottom-up”. There are distinguished Raman scattering signals for the second layer itself, surface of the first layer, interface between the first and second layer, side wall and bottom surface. It indicates that the obtained carbon nanotubes follow the base-growth mechanism, and the single-walled carbon nanotubes grow from their base at the growth beginning when iron catalyst particles have small size. Those carbon nanotubes with few walls (typically <5 walls) have similar properties, which also agree with the base-growth mechanism.
The melting mechanism and structure evolution of two-dimensional Au nanofilms with different thicknesses have been investigated in detail by using classical molecular dynamics simulations. The simulation results demonstrate that all Au nanofilms display a two-stage melting behavior of surface premelting and homogenous melting. Furthermore, the premelting behavior only occurs in the outermost layers but the other inner layers always keep a stable solid state until the corresponding melting point, which is different from the premelting behavior from surface into the interior in zero-dimensional Au nanocluster and one-dimensional Au nanowire. Meanwhile, the increase of nanofilm thickness can lead to an increase of melting point. During the premelting process, the surface reconstruction fromthe f100g plane to the f111g plane has directly been observed at a atomic level for all Au nanofilms. However even for the thinnest L2 nanofilm, the surface stress can't induce such surface reconstruction until temperature is up to 500 K, while similar surface reconstruction induced by surface stress can be observed at much lower temperature for the Au nanowire due to its higher surface-to-volume ratios compared to the Au nanofilm. In addition, our simulation results show that the thinnest Au nanofilm with two atomic layers can be broken into independent one-dimensional nanowires when the temperature reaches a certain value.
Metal-mediated base pairs by the interaction between metal ions and artificial bases in oligonucleotides has been widely used in DNA nanotechnology and biosensing technique. Using isothermal titration calorimetry, circular dichroism spectroscopy and fluorescence spectroscopy, the folding process of T-C-rich oligonucleotides (TCO) induced by Hg2+ and Ag+ with the synthetic sequence d(T6C6T6C6T6C6T6) was studied and analyzed. Although thermodynamic data predict that TCO should initially fold into a relatively stable hairpin through two possible pathways of conformational transitions whether Hg2+ or Ag+ were added at first, the mechanisms and final products between the two are entirely different from isothermal titration calorimetry outcomes. When Hg2+ were added first, the haipin was formed through T-Hg-T structure with further stabilization by C-Ag-C after Ag+ addition. However, it is proposed that an unusual metal-base pair for Ag+ binding is generated instead classical C-Ag-C when Ag+ was injected first. Moreover, further confirmation of this unconventional metal-base pair T-Ag-C was verified by circular dichroism and fluorescence spectroscopy.
Two organic conjugated molecules composed of central carbazole and bithiophene groups were prepared via the Stille coupling reaction, conductive polymers were prepared by elec-trochemical method. Structure and photoelectric research of polymers were investigated. 1H NMR and 13C NMR of molecules were consistent with the theorical results, FT-IR showed electrochemical polymeric site were α-position of thiophene units. The smooth morphology and distributed holes were beneficial to improve the electrical conductivity by SEM. When applied voltage was from -0.1 V to 1.2 V, both of the polymer films P1 and P2 showed good electrochromic performances. Compared with P1, P2 had better electrochemical stability and thermal stability due to the better coplanarity by repeated cyclic voltammograms and TGA. The P2 was a promising material in the electrochemical field, meanwhile, it showed that the monomer structure had greatly impact on the performance of polymer.
Three kinds of 4-hydroxyl azobenzene compouds with different substituents varied as -NO2, -H, -OCH3 in the para-position were synthesized and characterized. Their nonlinear optical properties in tetrahydrofuran (THF) and chloroform (CHCl3) solution were determined using Z-scan technique. The results revealed that the nonlinear absorption (β) and nonlinear refraction (γ) values of three azobenzene compounds in THF solution were larger than those in CHCl3 solution. It was mainly due to the regular arrangement and effective π-conjugation of azobenzene molecules caused by the formation of hydrogen bonds between the hydroxyl groups of azobenzene molecules and the oxygen atom of the THF molecules. Among three kinds of azobenzene compounds, the 4-nitro-4'-hydroxyazobenzene (NAzoOH) had the largest coefficients of βand γ values in both THF and CHCl3 solution. It was mainly because that a push-pull (D-π-A) electron system was formed by the electron withdrawing nitro-substituent with electron donating hydroxyl-group in both extremities of azobenzene, resulting in a higher electron delocalization.
5-Hydroxymethylfurfural (HMF) and furfural (FF), two bio-based platform chemicals, were produced from various raw lignocellulosic materials (corncob, corn stover, wheat straw, rice straw and sugarcane bagasse) in a water-tetrahydrofuran media by using NaHSO4 as catalyst. The in fluences of reaction temperature (160-200 oC), reaction time (30-120 min), solvent volume ratio, feedstock concentration (2.4wt%-11.1wt%) and catalyst dosage were studied. The highest HMF and FF yields obtained from corncob were 47mol% and 56mol% under condition of 190 oC, 90 min, 10/1 of THF/H2O. Besides, the lignin in the raw biomass wasalso depolymerized into organosolv lignin.
We investigate the polarity effects of the propylene carbonate on the breakdown voltage using the needle-plate electrodes with gaps of 0.5, 1.0, and 2.0 mm. The devices used in this study involve a compact capacitive-energy-storage pulse power source with charging time varying from 5 ms to 20 ms and a test cell with the needle-plate electrodes. The breakdown voltage is recorded by a digital oscilloscope for each gap. The results of these three groups indicate that the positive breakdown voltage is higher than the negative one and the breakdown voltage of the PC increases with the ascending electrode gap. In addition, a simulation isconducted to support this experiment. Some explanations about the polarity effect of the PC are also given.
Chinese abstract
Chinese Abstracts
2015, 28(5): 661-661.