2008 Vol. 21, No. 1

Deliquescence and efflorescence are the two most important physicochemical processes of aerosol particles. In deliquescence and efflorescence cycles of aerosol particles, many fundamental problems need to be investigated in detail on the molecular level, including ion and molecule interactions in supersaturated aerosols, metastable solid phases that may be formed, and microscopic structures and deliquescence mechanisms of aerosol particles. This paper presents a summary of the progress made in recent investigations of deliquescence and e2orescence processes of aerosol particles by four common spectral techniques, which are known as Raman/electrodynamic balance, Fourier transform infrared/aerosol flow tube, Fourier transforminfrared/attenuated total reflection, and confocal Raman on a quartz substrate.
The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on thepotential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transitions of C1Πu, B3Π+0u, A3Π1u <—X1Σ+g and their total energy absorption spectrum are derived, and the quantum yield of (Br+Br*) channel are determined correspondingly. The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation. The results indicate that the influence of nonadiabatic mechanism, which may be caused by the electronic-vibrational interplay between the B and C states, is negligibly small for the (Br+Br*) channel. From the Landau-Zener modeling of the observed product recoil parameter fi(Br+Br), the best-fit value of the coupling matrix element or coupling strength between the diabatic B and C state potentials is obtained.
TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Br?nsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.
The diffusion dynamics of small two-dimensional atomic clusters Cux (1·x·8) on Cu(111) surface were studied using the molecular dynamics simulations and a modified analytic embedded-atom method in the temperature range from 200 K to 800 K. The cluster size and temperature dependence of the diffusion coefficients and migration energies are presented. Our simulations show that the diffusion migration energy of the Cu7 cluster is the highest and the prefactor for the Cu7 cluster is almost three orders of magnitude larger than that for single atom diffusion. This conclusion is consistent with the experimental results for similar metals. In addition, the dependence of cluster diffusion on film growth is also discussed.
The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13×10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.
The adsorption of H2O molecule and its dissociation products, O and OH, on CuCl(111) surface was studied with periodic slab model by PW91 approach of GGA within the framework of density functional theory. The results of geometry optimization indicate that the top site is stable energetically for H2O adsorbed over the CuCl(111) surface. The threefold hollow site is found to be the most stable adsorption site for OH and O, and the calculated adsorption energies are 309.5 and 416.5 kJ/mol, respectively. Adsorption of H2O on oxygen-precovered CuCl(111) surface to form surface hydroxyl groups is predicted to be exothermic by 180.1 kJ/mol. The stretching vibrational frequencies, Mulliken population analysis and density of states analysis are employed to interpret the possible mechanism for the computed results.
A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 kJ/mol, in good agreement with experimental datKoopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.
The dynamic theory of die swell deduced in a previous paper was extensively applied to study the xtrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear stress. The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the free recovery and dynamic states. It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages (instantaneous, delayed, and ultimate extrudate swelling stages). The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress. The correlations of instantaneous, delayed, total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell. Also, two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect (UESE) were deduced. The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states; the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables. The second equation was verified by experimental data of HDPE at two temperatures and different operational variables. An excellent agreement result was obtained. The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time, the molecular parameters, and the operational variables under the dynamic and equilibrium states.
The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surface was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental datMoreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.
The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investigated. Cobalt-carbon core-shell microspheres with diameter of about 1 μm were prepared at 350 oC for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, Transmission electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.
Mixed oxide photocatalysts, ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method. The ZnO-ZTO nanowires were characterized with a scanning electron microscope, X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive spectrometer, and X-ray photoelectron spectrThe photocatalytic activity of the ZnO-ZTO mixed nanowires were studied by observing the photodegradation behaviors of methyl orange aqueous solution. The results suggest that the ZnO-ZTO mixed oxide nanowires have a higher photocatalytic activity than pure ZnO and Zn2SnO4 nanowires. The photocatalyst concentration in the solution distinctly affects the degradation rate, and our results show that higher photodegradation efficiency can be achieved with a smaller amount of ZnO-ZTO nanowire catalyst, as compared to the pure ZnO and ZTO nanowires. Moreover, the photocatalytic activity can also be enhanced by reducing the average diameter of the nanowires. The activity of pure ZnO and ZTO nanowires are also enhanced by physically mixing them. These results can be explained by the synergism between the two semiconductors.
In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.