The article information
 Yingchao Wu, Jiarui Rao, Xiaofei Li
 吴颖超, 饶家睿, 李小飞
 Strong CurrentPolarization and Negative Differential Resistance in FeN_{3}Embedded Armchair Graphene Nanoribbons
 FeN_{3}掺杂扶手椅型石墨烯纳米条带的极强电流极化和微分负导效应
 Chinese Journal of Chemical Physics, 2018, 31(6): 756760
 化学物理学报, 2018, 31(6): 756760
 http://dx.doi.org/10.1063/16740068/31/cjcp1807179

Article history
 Received on: July 28, 2018
 Accepted on: August 22, 2018
Transitionmetalnitrogencarbon (TMNC) materials have received much attention recently, due to promising applications in catalysis [15]. Graphene possesses novel properties and wide applications [6]. TM atoms can be loaded on graphene via adsorbing on defects or isolating at edges [711]. The resultant TMgraphene can be either magnetic or nonmagnetic [12, 13], depending on the type of TM atoms and the postformed substructures. Nitrogendoped graphene (Ngraphene) can adequately confine a large number of TM atoms via various chemical activities, due to the existence of many Ndoping induced activities [1419]. And experimental measurements show that the obtained TMNgraphene could possess enhanced stability and comparable high catalytic activity to TMgraphene and to other TMNC materials [20].
Recently, we have proven that conversion of dinitrogen to ammonia is achievable in FeN
In this work, the electronic structure and transport property of both FeN
Considering that AGNRs are classified into three families by their widthdependent energy gaps (
All the calculations were carried out in SIESTA code (Version 4.0), by applying nonequilibrium Green's functions (NEGFs) in combination with the spinresolved density functional theory (DFT) [33]. The revised PerdewBurkeErnzerhof (rPBE) generalized gradient approximation (GGA) was chosen for exchanging correlation potential. A 150 Ry cutoff energy was set for real space grids. An energy shift parameter of 0.01 Ry was used to determine the cutoff radii of atomic orbitals. A tolerance of 0.02 eV/Å on each atom was used to control the residual force for structural relaxations. The grids of 1
Total energy calculations show that the energy difference (
The magnetic moments of FeN
For the sake of analysis, the projected density of state (PDOS) of the FeN
We calculated electronic transport properties and the obtained currentvoltage (
Curious about the underlying mechanism, we illustrated the contour of biasdependent transmission
To reveal the source of the formed transmission belt, we plotted the band structures of the left and right electrodes, as well as the transmission of spindown system of FeN
By applying DFT+NEGF calculations, we have investigated the electronic structure and transport properties of FeN
Supplementary materials: The calculated spinup and spindown currents of the FeN
This work was supported by the National Natural Science Foundation of China (No.21643011), and the Fundamental Research Foundations for the Central Universities (No.ZYGX2016J067).
[1]  K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, and K. Mullen, ACS Nano 6 , 9541 (2012). DOI:10.1021/nn302674k 
[2]  S. Li, Y. Hu, Q. Xu, J. Sun, B. Hou, and Y. Zhang, J. Power Sour. 213 , 265 (2012). DOI:10.1016/j.jpowsour.2012.04.002 
[3]  H. Yin, C. Zhang, F. Liu, and Y. Hou, Adv. Func. Mater. 24 , 2930 (2014). DOI:10.1002/adfm.v24.20 
[4]  X. Chen, and B. Li, Chin. J. Chem. Phys. 28 , 573 (2015). DOI:10.1063/16740068/28/cjcp1505087 
[5]  X. F. Li, Q. K. Li, J. Cheng, L. Liu, Q. Yan, Y. Wu, X. H. Zhang, Z. Y. Wang, Q. Qiu, and Y. Luo, J. Am. Chem. Soc. 138 , 8706 (2016). DOI:10.1021/jacs.6b04778 
[6]  A. K. Geim, Science 324 , 1530 (2009). DOI:10.1126/science.1158877 
[7]  O. Cretu, A. V. Krasheninnikov, J. A. RodríguezManzo, L. Sun, R. M. Nieminen, and F. Banhart, Phys. Rev. Lett. 105 , 196102 (2010). DOI:10.1103/PhysRevLett.105.196102 
[8]  Y. C. Lin, P. Y. Teng, P. W. Chiu, and K. Suenaga, Phys. Rev. Lett. 115 , 206803 (2015). DOI:10.1103/PhysRevLett.115.206803 
[9]  K. T. Chan, J. Neaton, and M. L. Cohen, Phys. Rev. B 77 , 235430 (2008). DOI:10.1103/PhysRevB.77.235430 
[10]  T. Chen, X. F. Li, L. L. Wang, Q. Li, K. W. Luo, X. H. Zhang, and L. Xu, J. Appl. Phys. 115 , 053707 (2014). DOI:10.1063/1.4863638 
[11]  L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458 , 877 (2009). DOI:10.1038/nature07919 
[12]  J. I. G. Enriquez, C. V. Al Rey, Inter. J. Hydr. Energy 41 , 12157 (2016). DOI:10.1016/j.ijhydene.2016.06.035 
[13]  B. Anasori, M. Beidaghi, and Y. Gogotsi, Mater. Today 17 , 253 (2014). DOI:10.1016/j.mattod.2014.04.043 
[14]  P. Zhao, Q. H. Wu, D. S. Liu, and G. Chen, J. Chem. Phys. 140 , 044311 (2014). DOI:10.1063/1.4862502 
[15]  J. Huang, R. Xie, W. Wang, Q. Li, and J. Yang, Nanoscale 8 , 609 (2016). DOI:10.1039/C5NR05601B 
[16]  A. Torres, M. P. Lima, and A. Fazzio, A. J. da Silva, Appl. Phys. Lett. 104 , 072412 (2014). DOI:10.1063/1.4866184 
[17]  A. Krasheninnikov, P. Lehtinen, A. S. Foster, P. Pyykk, and R. M. Nieminen, Phys. Rev. Lett. 102 , 126807 (2009). DOI:10.1103/PhysRevLett.102.126807 
[18]  H. S. Moon, J. M. Yun, K. H. Kim, S. S. Jang, and S. G. Lee, RSC Adv. 6 , 39587 (2016). DOI:10.1039/C6RA03458F 
[19]  F. L. Benedito, T. Petrenko, E. Bill, T. Weyhermller, and K. Wieghardt, Inorg. Chem. 48 , 10913 (2009). DOI:10.1021/ic9008976 
[20]  J. Du, F. Cheng, S. Wang, T. Zhang, and J. Chen, Sci. Rep. 4 , 4386 (2014). 
[21]  J. Zhang, Z. Wang, and Z. Zhu, Electrochem. Soc. 162 , F1262 (2015). DOI:10.1149/2.0991510jes 
[22]  H. Wang, M. Xie, L. Thia, A. Fisher, and X. Wang, J. Phys. Chem. Lett. 5 , 119 (2013). 
[23]  T. Xu, J. Huang, and Q. X. Li, Chin. J. Chem. Phys. 27 , 653 (2015). 
[24]  X. F. Li, K. Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, and Y. Luo, Sci. Rep. 6 , 23495 (2016). DOI:10.1038/srep23495 
[25]  M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98 , 206805 (2007). DOI:10.1103/PhysRevLett.98.206805 
[26]  Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97 , 216803 (2006). DOI:10.1103/PhysRevLett.97.216803 
[27]  P. Ruffieux, S. Wang, B. Yang, C. SánchezSánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mullen, and R. Fasel, Nature 531 , 489 (2016). DOI:10.1038/nature17151 
[28]  X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100 , 206803 (2008). DOI:10.1103/PhysRevLett.100.206803 
[29]  L. Liu, X. F. Li, Q. Yan, Q. K. Li, X. H. Zhang, M. Deng, Q. Qiu, and Y. Luo, Phys. Chem. Chem. Phys. 19 , 44 (2017). DOI:10.1039/C6CP06640B 
[30]  W. Lu, H. Chen, S. Liu, J. Zi, and Z. Lin, Phys. Chem. Chem. Phys. 18 , 8561 (2016). DOI:10.1039/C5CP06581J 
[31]  A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, and P. Liljeroth, Nat. Commun. 6 , 10177 (2015). DOI:10.1038/ncomms10177 
[32]  F. Xie, Z. Q. Fan, K. Liu, H. Y. Wang, J. H. Yu, and K. Q. Chen, Org. Elec. 27 , 41 (2015). DOI:10.1016/j.orgel.2015.08.028 
[33]  J. M. Soler, E. Artacho, J. D. Gale, A. Garc, and J. Junquera, P. Ordejón, D. Sanchez Portal, J. Phys.: Condens. Matter 14 , 2745 (2002). DOI:10.1088/09538984/14/11/302 