The article information
- Wei-lin Xiong, Imran Abdullah Muhammad, Ming-ming Ma
- 熊伟麟, Muhammad Imran Abdullah, 马明明
- Electrosynthesis of CuO Nanocrystal Array as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction
- 铜纳米阵列高效电解水产氧催化剂的制备
- Chinese Journal of Chemical Physics, 2018, 31(6): 806-812
- 化学物理学报, 2018, 31(6): 806-812
- http://dx.doi.org/10.1063/1674-0068/31/cjcp1805116
-
Article history
- Received on: May 25, 2018
- Accepted on: June 3, 2018
Energy conversion and storage based on electrochemical processes are considered as a sustainable approach to store renewable energy in the form of clean chemical fuels [1]. Oxygen evolution reaction (OER) is one of the key reaction for water splitting and metal-air batteries [2]. OER process is relatively slow and complicated in mechanism, which makes it the rate-determining step in many processes [3, 4]. Currently, the most widely used electrocatalysts for OER are based on noble metal oxides, such as RuO
One effective way to improve the performance of electrocatalysts is to assemble the active materials into defined micro- and nano- structure on the electrode, such as hollow structure [26] and vertical array structure [27]. These nanostructure can be synthesized by hydrothermal [28], sol-gel [29], and chemical bath deposition methods [30, 31]. But there is often adhesion issue between the formed nanomaterials and the conductive substrate, which limits the loading amount of active materials and the stability of electrode during long time electrolysis [32]. Electrodeposition of active catalysts on electrodes appears as a cheap, safe, and convenient approach to prepare non-noble-metal based electrocatalysts with defined micro- and nano- structures [33, 34]. The effective adhesion and electrical contact between the active materials and the conductive substrate are ensured. The shape, size, and thickness of the active catalyst layer can be controlled with the adjustment of solution concentration and electrochemical deposition parameters. Herein we report an electrochemical approach to synthesize CuO nanocrystal arrays as an efficient and robust electrocatalyst for OER in an alkaline electrolyte, whose performance exceeds that of IrO
IrO
Cu foam was repeatedly washed with acetone, distilled water, and 0.5 mmol/L H
![]() |
FIG. 1 Schematics of the preparation of CuO NCA. |
The IrO
X-ray powder diffraction (XRD) was carried out on a Rigaku D X-ray diffractometer with Cu K
Electrochemical tests were performed with a three-electrode system using a CHI660 electrochemical workstation. A stainless steel sheet, SCE (saturated calomel electrode), and CuO-NCA were used as the counter electrode, reference electrode, and working electrode respectively. The 5 mV/s scan rate was used for Tafel plot and polarization curves. The electrochemical impedance spectroscopy (EIS) was performed with a 100 kHz to 0.05 Hz frequency range and 5 mV sinusoidal voltage. The ohmic drop during electrolysis process was calculated based on the contact resistance
The electrochemical active surface area of the catalysts was estimated based on the double-layer capacitance (
The commercially purchased Cu foam was chosen as the substrate due to its low cost, excellent conductivity and porous structure. The 3D porous structure of Cu foam can provide a large loading of CuO nanocrystals and enough interspaces for the release of generated gas bubbles. The synthesis method of CuO nanocrystals has been illustrated in FIG. 1. Cu
![]() |
FIG. 2 (a, b) XRD patterns of the Cu |
The Cu
By adjusting the voltage for electrodeposition, the size of Cu
![]() |
FIG. 3 SEM images of the Cu |
The OER activity of as-prepared CuO NCA electrodes was evaluated in 1.0 mol/L KOH with the Tafel method under a scan rate of 5 mV/s (FIG. 4(a)). As expected, the CuO NCA sample prepared from the Cu
![]() |
FIG. 4 Electrochemical properties of CuO NCA electrodes. (a) Tafel plots of the CuO NCA derived from the Cu |
A bare Cu foam, IrO
For many OER catalysts, the generated O
We also test the stability of CuO NCA during a long-term OER test at a large current density. An electrolysis voltage of 700 mV vs. SCE was applied on both CuO NCA and IrO
Theoretically, IrO
![]() |
FIG. 5 Estimation of the electrochemical active surface area of (a, b) bulk Cu foam and (c, d) optimal CuO NCA by performing CV in an electrochemical inert potential window to calculate the |
In summary, we present a general strategy of fabricating a CuO-based nanocrystal array as highly active electrocatalysts for OER in alkaline electrolytes. The two-step sacrifice-template method efficiently builds up a 3-D hierarchical CuO NCA with flower-like structure that is firmly connected to the Cu foam as a highly conductive substrate. Owing to the hierarchical nanostructure, the high mass loading and the efficient electrical contact with the Cu foam, the CuO NCA needs a low overpotential of 400 mV to drive a high current density of 100 mA/cm
Supplementary materials: FIG. S1 and FIG. S2 present the change of the XPS spectrum of the CuO-NCA and Cu
This work was supported by the National Natural Science Foundation of China (No.21474094 and No.21722406). Muhammad Imran Abdullah acknowledges the Chinese Academy of Science (CAS) and TWAS for supporting him for a Ph.D. degree from University of Science and Technology of China in the category of 2016 CAS-TWAS President's Fellowship Awardee (Series No.2016-171).
[1] | Y. Zheng, Y. Jiao, Y. H. Zhu, L. H. Li, Y. Han, Y. Chen, A. J. Du, M. Jaroniec, and S. Z. Qiao, Nat. Commun. 5 , 3783 (2014). DOI:10.1038/ncomms4783 |
[2] | J. Zhang, Z. Zhao, Z. Xia, and L. Dai, Nat. Nanotechnol. 10 , 444 (2015). DOI:10.1038/nnano.2015.48 |
[3] | M. S. Burke, L. J. Enman, A. S. Batchellor, S. H. Zou, and S. W. Boettcher, Chem. Mater. 27 , 7549 (2015). DOI:10.1021/acs.chemmater.5b03148 |
[4] | N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, and H. M. Chen, Chem. Soc. Rev. 46 , 337 (2017). DOI:10.1039/C6CS00328A |
[5] | Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett. 3 , 399 (2012). DOI:10.1021/jz2016507 |
[6] | W. X. Zhu, X. Y. Yue, W. T. Zhang, S. X. Yu, Y. H. Zhang, J. Wang, and J. L. Wang, Chem. Commun. 52 , 1486 (2016). DOI:10.1039/C5CC08064A |
[7] | B. You, N. Jiang, M. L. Sheng, M. W. Bhushan, and Y. J. Sun, ACS Catal. 6 , 714 (2016). DOI:10.1021/acscatal.5b02193 |
[8] | N. Lu, W. H. Zhang, and X. J. Wu, Chin. J. Chem. Phys. 30 , 553 (2017). DOI:10.1063/1674-0068/30/cjcp1705090 |
[9] | Z. H. Li, M. F. Shao, H. L. An, Z. X. Wang, S. M. Xu, M. Wei, D. G. Evans, and X. Duan, Chem. Sci. 6 , 6624 (2015). DOI:10.1039/C5SC02417J |
[10] | L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, J. Am. Chem. Soc. 136 , 6744 (2014). DOI:10.1021/ja502379c |
[11] | R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N. M. Markovic, Nat. Mater. 11 , 550 (2012). DOI:10.1038/nmat3313 |
[12] | V. Artero, M. Chavarot-Kerlidou, and M. Fontecave, Angew. Chem. Int. Edit. 50 , 7238 (2011). DOI:10.1002/anie.v50.32 |
[13] | X. J. Liu, Z. Chang, L. Luo, T. H. Xu, X. D. Lei, J. F. Liu, and X. M. Sun, Chem. Mater. 26 , 1889 (2014). DOI:10.1021/cm4040903 |
[14] | Q. Yang, Z. Y. Lu, T. Li, X. M. Sun, and J. F. Liu, Nano Energy 7 , 170 (2014). DOI:10.1016/j.nanoen.2014.03.005 |
[15] | Q. Yang, T. Li, Z. Y. Lu, X. M. Sun, and J. F. Liu, Nanoscale 6 , 11789 (2014). DOI:10.1039/C4NR03371J |
[16] | N. Jiang, B. You, M. L. Sheng, and Y. J. Sun, Angew. Chem. Int. Ed. 54 , 6251 (2015). DOI:10.1002/anie.201501616 |
[17] | B. R. Liu, N. Zhang, and M. M. Ma, J. Mater. Chem. A 5 , 17640 (2017). DOI:10.1039/C7TA04248E |
[18] | M. T. Zhang, Z. F. Chen, P. Kang, and T. J. Meyer, J. Am. Chem. Soc. 135 , 2048 (2013). DOI:10.1021/ja3097515 |
[19] | S. M. Pawar, B. S. Pawar, B. Hou, J. Kim, A. T. Aqueel Ahmed, H. S. Chavan, Y. Jo, S. Cho, A. I. Inamdar, J. L. Gunjakar, H. Kim, S. Cha, and H. Im, J. Mater. Chem. A 5 , 12747 (2017). DOI:10.1039/C7TA02835K |
[20] | C. C. Hou, C. J. Wang, Q. Q. Chen, X. J. Lv, W. F. Fu, and Y. Chen, Chem. Commun. 52 , 14470 (2016). DOI:10.1039/C6CC08780A |
[21] | X. Q. Zhao, L. Liu, Y. Zhang, H. J. Zhang, and Y. Wang, Nanotechnology 28 , 345402 (2017). DOI:10.1088/1361-6528/aa79d2 |
[22] | J. L. Du, Z. F. Chen, S. R. Ye, B. J. Wiley, and T. J. Meyer, Angew. Chem. Int. Edit. 54 , 2073 (2015). DOI:10.1002/anie.201408854 |
[23] | C. C. Hou, W. F. Fu, and Y. Chen, Chem. Sus. Chem. 9 , 2069 (2016). DOI:10.1002/cssc.201600592 |
[24] | X. Liu, S. S. Cui, Z. J. Sun, Y. Ren, X. Y. Zhang, and P. W. Du, J. Phys. Chem. C 120 , 831 (2016). |
[25] | T. N. Huan, G. Rousse, S. Zanna, I. T. Lucas, X. Z. Xu, N. Menguy, V. Mougel, and M. Fontecave, Angew. Chem. Int. Ed. 56 , 4792 (2017). DOI:10.1002/anie.201700388 |
[26] | B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, and L. Zheng, Science 352 , 333 (2016). DOI:10.1126/science.aaf1525 |
[27] | L. Zhang, B. Liu, N. Zhang, and M. Ma, Nano Res. 11 , 323 (2018). DOI:10.1007/s12274-017-1634-z |
[28] | B. Liu, and H. C. Zeng, J. Am. Chem. Soc. 125 , 4430 (2003). DOI:10.1021/ja0299452 |
[29] | M. A. Ciciliati, M. F. Silva, D. M. Fernandes, M. A. C. de Melo, A. A. W. Hechenleitner, and E. A. G. Pineda, Mater. Lett. 159 , 84 (2015). DOI:10.1016/j.matlet.2015.06.023 |
[30] | P. O'Brien, and J. McAleese, J. Mater. Chem. 8 , 2309 (1998). DOI:10.1039/a804692a |
[31] | P. X. Yang, J. Zhang, L. Liu, and M. S An, Chin. J. Chem. Phys. 28 , 206 (2015). DOI:10.1063/1674-0068/28/cjcp1412204 |
[32] | D. Josell, D. Wheeler, C. Witt, and T. P. Moffat, Electrochem. Solid. St. 6 , C143 (2003). DOI:10.1149/1.1605271 |
[33] | B. M. Quinn, C. Dekker, and S. G. Lemay, J. Am. Chem. Soc. 127 , 6146 (2005). DOI:10.1021/ja0508828 |
[34] | A. A. Mikhaylova, E. B. Molodkina, O. A. Khazova, and V. S. Bagotzky, J. Electroanal. Chem. 509 , 119 (2001). DOI:10.1016/S0022-0728(01)00479-X |
[35] | J. P. Osullivan, and G. C. Wood, Proc. R. Soc. London, Ser. A 317 , 511 (1970). DOI:10.1098/rspa.1970.0129 |
[36] | N. S. Mcintyre, S. Sunder, D. W. Shoesmith, and F. W. Stanchell, J. Vac. Sci. Technol. 18 , 714 (1981). DOI:10.1116/1.570934 |
[37] | K. K. Mishra, and K. Rajeshwar, J. Electroanal. Chem. 271 , 279 (1989). |
[38] | B. F. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, and P. G. Khalifah, J. Am. Chem. Soc. 135 , 19186 (2013). DOI:10.1021/ja4081056 |
[39] | Y. Kuang, G. Feng, P. S. Li, Y. M. Bi, Y. P. Li, and X. M. Sun, Angew. Chem. Int. Ed. 55 , 693 (2016). DOI:10.1002/anie.201509616 |
[40] | D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. L. Hu, Chem. Sci. 3 , 2515 (2012). DOI:10.1039/c2sc20539d |
[41] | C. W. Li, and M. W. Kanan, J. Am. Chem. Soc. 134 , 7231 (2012). DOI:10.1021/ja3010978 |