The article information
- Xi-zi Cao, Bao-qi Yin, Ting-ting Wang, Xiao-peng Xing
- 曹西子, 殷保祺, 王亭亭, 邢小鹏
- Exploring the Interactions of Atomic Oxygen on Silver Clusters with Hydrogen†
- 银团簇上吸附氧原子与氢气作用的研究
- Chinese Journal of Chemical Physics, 2017, 30(6): 685-690
- 化学物理学报, 2017, 30(6): 685-690
- http://dx.doi.org/10.1063/1674-0068/30/cjcp1710193
-
Article history
- Received on: October 23, 2017
- Accepted on: December 4, 2017
The reactivity of oxygen species on silver is a very import topic in the surface science, because it is closely relevant to many industrially or environmentally important oxidation processes catalyzed by silver, such as the partial oxidation of ethylene or propylene [1], and selective oxidation of CO from hydrogen-rich gas used in fuel cells [2, 3]. Extensive studies were carried out on the structures and properties of oxygen species on bulk silver or dispersed silver particles, showing that they have quite a few various molecular and atomic states [4, 5]. The atomic oxygen on silver was classified to three types, O
Silver clusters are ideal models for the active sites of heterogeneous silver catalysts, and many of them were studied using gas phase experiments and density function theory calculations [11-23]. The structures and properties of these small species have many distinctive characters. For example, some small clusters have kind of global or local five-fold symmetry [17, 18], which can not exist in crystals. The adsorption, activation and reactions of O
In our recent study [37], we generated cluster series AgnO- (n=1-8), and explored their reactions with CO. In this work, we explored the interactions between AgnO- (n=1-8) and H
The measurements on clusters' reactions were carried out on an instrument composed of a magnetron sputter cluster source, a flow reactor, and a time-of-flight (TOF) mass spectrometer, whose details were described elsewhere [31, 38, 39]. Briefly, the cluster source generated the AgnO- (n=1-8) series by mixing trace amount of oxygen (at a ppm level) inside the helium buffer gas, in which the O
The clusters' reaction paths were investigated using DFT calculations. The B3LYP hybrid functional was used [40-42], which makes use of the Hartree-Fock exact exchange and Becke's exchange functional and the Lee-Yang-Parr correlation functional. The structural candidates of the reactants, the intermediates, the products, and the transition states were initially optimized with the Lanl2dz basis sets for all elements. The lower lying ones from these preliminary calculations were further optimized using a more sophisticated method, in which the aug-cc-pVTZ-pp basis set was selected for Ag, and the 6-311G
FIG. 1 shows the mass spectra of anionic clusters sampled at the end of the reactor with no reactants, with 0.20 sccm H
![]() |
FIG. 1 Mass spectra showing the cluster series of AgnO- (n=1-8) and Ag |
![]() |
FIG. 2 Mass spectra showing the cluster series of AgnO- (n=1-8) and Ag |
The lowest structures of AgnO- (n=1-8) and their reactions with CO were previously explored [37]. In this work, we explored the possible reaction paths of previous determined structures of AgnO- (n=1-8) with H
![]() |
FIG. 3 Theoretical paths for the reactions between AgnO- (n=1-8) and H |
The predicted H
The reactivity of surface oxygen on silver was extensively investigated in condensed phases. It was shown that most atomic oxygen on silver reacts with CO below 200 K [45-48], while activation or reactions of H
We explored the reactions of AgnO- with hydrogen (H
This work was supported by the National Natural Science Foundation of China (No.21273278 and No.21673158), the Ministry of Science and Technology of China (No.2012YQ22011307), and Science & Technology Commission of Shanghai Municipality (14DZ2261100). The authors are greatly thankful to Dr. Joel H. Parks in Rowland Institute at Harvard for giving us most of the experimental facilities, and acknowledge helpful discussions with Prof. Xue-feng Wang in Tongji University.
[1] | R. M. Lambert, F. J. Williams, R. L. Cropley, and A. Palermo, J. Mol. Catal. A:Chem. 228 , 27 (2005). DOI:10.1016/j.molcata.2004.09.077 |
[2] | Z. Qu, M. Cheng, C. Shi, and X. Bao, J. Mol. Catal. A:Chem. 239 , 22 (2005). DOI:10.1016/j.molcata.2005.05.033 |
[3] | Z. Qu, M. Cheng, X. Dong, and X. Bao, Catal. Today 247 , 93–95 (2004). |
[4] | C. T. Campbell, Surf. Sci. 157 , 43 (1985). DOI:10.1016/0039-6028(85)90634-X |
[5] | F. Besenbacher, and J. K. Nørskov, Prog. Surf. Sci. 44 , 5 (1993). DOI:10.1016/0079-6816(93)90006-H |
[6] | A. J. Nagy, G. Mestl, and R. Schlögl, J. Catal. 188 , 58 (1999). DOI:10.1006/jcat.1999.2651 |
[7] | S. Linic, and M. A. Barteau, J. Am. Chem. Soc. 125 , 4034 (2003). DOI:10.1021/ja029076g |
[8] | G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, Appl. Surf. Sci. 214 , 36 (2003). DOI:10.1016/S0169-4332(03)00350-7 |
[9] | D. S. Su, T. Jacob, T. W. Hansen, D. Wang, R. Schloegl, B. Freitag, and S. Kujawa, Angew. Chem. Int. Edit. 47 , 5005 (2008). DOI:10.1002/anie.v47:27 |
[10] | T. C. R. Rocha, A. Oestereich, D. V. Demidov, M. Haevecker, S. Zafeiratos, G. Weinberg, V. I. Bukhtiyarov, A. Knop-Gericke, and R. Schloegl, Phys. Chem. Chem. Phys. 14 , 4554 (2012). DOI:10.1039/c2cp22472k |
[11] | H. Handschuh, C. Y. Cha, P. S. Bechthold, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 102 , 6406 (1995). DOI:10.1063/1.469356 |
[12] | S. Kruckeberg, G. Dietrich, K. Lutzenkirchen, L. Schweikhard, C. Walther, and J. Ziegler, Int. J. Mass Spectrom. Ion Processes 155 , 141 (1996). DOI:10.1016/S0168-1176(96)04412-6 |
[13] | K. Michaelian, N. Rendon, and I. L. Garzon, Phys. Rev. B 60 , 2000 (1999). DOI:10.1103/PhysRevB.60.2000 |
[14] | I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 312 , 394 (1999). DOI:10.1016/S0009-2614(99)00872-6 |
[15] | V. A. Spasov, T. H. Lee, J. P. Maberry, and K. M. Ervin, J. Chem. Phys. 110 , 5208 (1999). DOI:10.1063/1.478416 |
[16] | P. Weis, T. Bierweiler, S. Gilb, and M. M. Kappes, Chem. Phys. Lett. 355 , 355 (2002). DOI:10.1016/S0009-2614(02)00277-4 |
[17] | X. P. Xing, R. M. Danell, I. L. Garzon, K. Michaelian, M. N. Blom, M. M. Burns, and J. H. Parks, Phys. Rev. B 72 , 081405 (2005). DOI:10.1103/PhysRevB.72.081405 |
[18] | D. Schooss, M. N. Blom, J. H. Parks, B. von Issendorff, H. Haberland, and M. M. Kappes, Nano Lett. 5 , 1972 (2005). DOI:10.1021/nl0513434 |
[19] | M. N. Blom, D. Schooss, J. Stairs, and M. M. Kappes, J. Chem. Phys. 124 , 244308 (2006). DOI:10.1063/1.2208610 |
[20] | X. L. Yang, W. S. Cai, and X. G. Shao, J. Phys. Chem. A 111 , 5048 (2007). DOI:10.1021/jp0711895 |
[21] | M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, and C. Felix, J. Chem. Phys. 129 , 194108 (2008). DOI:10.1063/1.3013557 |
[22] | S. Y. Yan, W. Zhang, Z. X. Zhao, W. C. Lu, and H. X. Zhang, Theor. Chem. Acc. 131 , 1200 (2012). DOI:10.1007/s00214-012-1200-4 |
[23] | G. U. Gamboa, A. C. Reber, and S. N. Khanna, New J. Chem. 37 , 3928 (2013). DOI:10.1039/c3nj01075a |
[24] | L. D. Socaciu, J. Hagen, U. Heiz, T. M. Bernhardt, T. Leisner, and L. Woste, Chem. Phys. Lett. 340 , 282 (2001). DOI:10.1016/S0009-2614(01)00447-X |
[25] | M. Schmidt, A. Masson, and C. Bréchignac, Phys. Rev. Lett. 91 , 243401 (2003). DOI:10.1103/PhysRevLett.91.243401 |
[26] | L. D. Socaciu, J. Hagen, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Woste, and S. Vajda, J. Chem. Phys. 120 , 2078 (2004). DOI:10.1063/1.1644103 |
[27] | J. Hagen, L. D. Socaciu, J. Le Roux, D. Popolan, T.M. Bernhardt, L. Woste, R. Mitric, H. Noack, and V. Bonacic-Koutecky, J. Am. Chem. Soc. 126 , 3442 (2004). DOI:10.1021/ja038948r |
[28] | Z. Luo, G. U. Gamboa, J. C. Smith, A. C. Reber, J. U. Reveles, S. N. Khanna, and A. W. Castleman Jr., J. Am. Chem. Soc. 134 , 18973 (2012). DOI:10.1021/ja303268w |
[29] | Y. N. Wu, M. Schmidt, J. Leygnier, H. P. Cheng, A. Masson, and C. Brechignac, J. Chem. Phys. 136 , 8 (2012). |
[30] | M. Schmidt, A. Masson, H. P. Cheng, and C. Brechignac, Chemphyschem 16 , 855 (2015). DOI:10.1002/cphc.v16.4 |
[31] | J. Ma, X. Cao, X. Xing, X. Wang, and J. H. Parks, Phys. Chem. Chem. Phys. 18 , 743 (2016). DOI:10.1039/C5CP06116D |
[32] | G. M. Koretsky, and M. B. Knickelbein, J. Chem. Phys. 107 , 10555 (1997). DOI:10.1063/1.474219 |
[33] | L. Jiang, and Q. Xu, J. Phys. Chem. A 110 , 11488 (2006). DOI:10.1021/jp064129s |
[34] | H. Gronbeck, A. Hellman, and A. Gavrin, J. Phys. Chem. A 111 , 6062 (2007). DOI:10.1021/jp071117d |
[35] | J. Hagen, L. D. Socaciu-Siebert, J. Le Roux, D. Popolan, S. Vajda, T. M. Bernhardt, and L. Woeste, Int. J. Mass spectrom. 261 , 152 (2007). DOI:10.1016/j.ijms.2006.08.008 |
[36] | Z. X. Luo, G. U. Gamboa, M. Y. Jia, A. C. Reber, S. N. Khanna, and A. W. Castleman, J. Phys. Chem. A 118 , 8345 (2014). DOI:10.1021/jp501164g |
[37] | X. Cao, M. Chen, J. Ma, B. Yin, and X. Xing, Phys. Chem. Chem. Phys. 19 , 196 (2017). DOI:10.1039/C6CP06741G |
[38] | J. Ma, X. Cao, L. Hao, Y. Baoqi, and X. Xing, Phys. Chem. Chem. Phys. 18 , 12819 (2016). DOI:10.1039/C6CP01156J |
[39] | J. Ma, X. Cao, M. Chen, B. Yin, X. Xing, and X. Wang, J. Phys. Chem. A 120 , 9131 (2016). DOI:10.1021/acs.jpca.6b09129 |
[40] | A. D. Becke, J. Chem. Phys. 98 , 1372 (1993). DOI:10.1063/1.464304 |
[41] | C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37 , 785 (1988). DOI:10.1103/PhysRevB.37.785 |
[42] | P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98 , 11623 (1994). DOI:10.1021/j100096a001 |
[43] | K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47 , 1045 (2007). DOI:10.1021/ci600510j |
[44] | M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochter-ski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A02, Wallingford, CT: Gaussian Inc., (2009). |
[45] | U. Burghaus, and H. Conrad, Surf. Sci. 364 , 109 (1996). DOI:10.1016/0039-6028(96)00601-2 |
[46] | J. V. Barth, and T. Zambelli, Surf. Sci. 513 , 359 (2002). DOI:10.1016/S0039-6028(02)01780-6 |
[47] | U. Burghaus and H. Conrad, Surf. Sci. 338, L869(1995). |
[48] | U. Burghaus, and H. Conrad, Surf. Sci. 201 , 352–354 (1996). |
[49] | A. F. Benton, and J. C. Elgin, J. Am. Chem. Soc. 48 , 3027 (1926). DOI:10.1021/ja01691a005 |
[50] | R. J. Mikovksy, M. Boudart, and H. S. Taylor, J. Am. Chem. Soc. 76 , 3814 (1954). DOI:10.1021/ja01643a067 |
[51] | A. L. de Oliveira, A. Wolf, and F. Schuth, Catal. Lett. 73 , 157 (2001). DOI:10.1023/A:1016641708074 |
[52] | S. Klacar, and H. Grönbeck, Catal. Sci. Technol. 3 , 183 (2013). DOI:10.1039/C2CY20343J |
[53] | Z. P. Qu, W. X. Huang, M. J. Cheng, and X. H. Bao, J. Phys. Chem. B 109 , 15842 (2005). DOI:10.1021/jp050152m |