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The traditional quasiharmonic approximation cannot predict the phase diagram of Ti accu-
rately, due to the well-known soften phonon modes of the β-Ti. By means of self-consistent
ab initio lattice dynamics (SCAILD) method, in which the effects of phonon-phonon in-
teractions are considered, the phonon dispersion relations at finite temperature for Ti are
calculated. From the phonon dispersions, we extrapolat the acoustic velocities and harmonic
elastic constants. The dynamical stable regions and phase diagram of Ti are also predicted
successfully. The results show that SCAILD method can be designed to work for strongly
anharmonic systems where the QHA fails.
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I. INTRODUCTION

In the past decades, density functional theory (DFT)
has successfully predicted the thermodynamic proper-
ties and phase transformations for elemental and alloyed
materials. Though it is a ground-state theory, the cru-
cial effect of thermal vibrations of atoms in principle
can be included via the so-called quasiharmonic ap-
proximation (QHA). QHA is widely used to describe
the thermal properties of solid under high temperature
and high pressure, it assumes that the potential energy
surface does not depend on temperature and the intrin-
sic anharmonic effects are neglected. In particular, it
becomes problematic when the high temperature phase
is mechanically unstable at low temperatures, i.e., the
phonon spectra contain imaginary frequencies but sta-
bilized due to the anharmonic contributions to the free
energy at elevated temperatures. To resolve this prob-
lem, the anharmonic effects of high temperature should
be considered firstly. In principle, ab initio molecular
dynamics is a good choice. However, the computational
cost of ab initio molecular dynamics simulations limits
the applicability. Thus, there is significant motivation
to develop a simplified method of dealing with mechani-
cally unstable systems. The self-consistent ab initio lat-
tice dynamics (SCAILD) method is such a convenient
and reliable method [1−4]. As the interaction between
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phonons can be considered in SCAILD method, the in-
fluence of anharmonic contribution to the lattice dy-
namics can be investigated as a function of temperature.
By using this method, the phonon dispersions of group
IV metals were reproduced and the transition temper-
atures between different phases were also obtained at
zero pressure [4].

As a well-known strongly anharmonic solid, titanium
(Ti) has been investigated extensively. Ti exhibits a
phase transition from the ground-state hexagonal close-
packed (hcp or α phase, space group P63/mmc) crystal
structure to the body-centered cubic (bcc or β phase,
space group Im-3m) at temperature above 1155 K [5]
under ambient pressure. With increasing pressure at
room temperature, the α phase transforms into hexag-
onal AlB2 type structure called ω phase (space group
P6/mmm). The α-ω transition, which is driven by the
electron transfer from s to d band, is a representative
example of martensitic transformations and has been
observed to occur between 2 and 15 GPa at room tem-
perature [6], depending on the experimental technique,
the pressure environment, and the sample purity. The
phase diagram of Ti was well investigated by Zhang et
al. experimentally [7, 8]. By conducting synchrotron X-
ray diffraction experiments, they derived thermal phase
transformation and thermal equations of state of Ti un-
der high temperature and high pressure. But the phase
diagram of Ti has not been well studied theoretically
due to the well-known soften phonon modes of the β-Ti.
The phonon spectra reveal imaginary phonon frequen-
cies of the soft modes in traditional QHA, indicating
the dynamical instability. But the measured frequen-
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cies of β-Ti are positive in experiments [9], because the
anharmonic effects are neglected in QHA. Therefore the
information on the temperature dependence of the vi-
brational modes and the phonon-phonon interactions
that are responsible for the high temperature phase sta-
bility is lost. If we consider the phonon-phonon interac-
tions, we can obtain the phonon dispersions at different
temperatures and more accurate thermodynamic prop-
erties.

In this work, we extrapolated SCAILD method to
high pressure and predicted the phase diagram of Ti un-
der high temperature and high pressure. As the method
contains the interaction between phonons, it can prop-
erly describe the dynamical stability and phase transi-
tion of Ti exactly.

II. COMPUTATIONAL METHOD

The calculations were performed using DFT and
implemented through the Vienna ab initio simulation
package. In the calculation, we used the highly accu-
rate frozen core all-electron projector augmented wave
(PAW) method [10]. The exchange and correlation po-
tentials were treated within Perdew, Burke, and Ernz-
erhof [11]. Our calculations were performed with a cut-
off energy of 500 eV, treating 3p, 3d, and 4s orbitals
as valence states. For the static structural calculations,
the 17×17×11, 11×11×17, and 19×19×19 Γ-centered
k meshs were used for α-, ω-, and β-Ti, respectively.
All necessary convergence tests were performed and
the self-consistence convergence of the energy was set
to 10−6 eV/atom. High temperature phonon calcula-
tions were performed using SCAILD method. We cal-
culated 54, 81, and 64 atoms for α-, ω-, and β-Ti with
Monkhorst-Pack 5×5×5 k-point grid and Fermi smear-
ing in the calculations. The self-consistence convergence
of the energy was set to 0.1 meV/atom. To obtain the
force constants for the phonon calculations, atomic dis-
placements of 0.03 Å were employed. The Helmholtz
free energy F can be accurately separated as

F (V, T ) = U0(V ) + Fphon(V, T ) + Felec(V, T ) (1)

where U0(V ) is the energy of a static lattice at zero
temperature, Felec(V, T ) is the thermal free energy aris-
ing from electronic excitations, and Fphon(V, T ) is the
phonon contribution. The temperature dependent parts
of the free energy can be found as

Fphon(V, T ) + Felec(V, T ) = ∆F ({UR}, V, T ) +
3

2
kBT − TSph(V, T ) (2)

where kB is the Boltzmann constant, UR is the atomic
displacements generated throughout the SCAILD self-
consistent run. Here ∆F is the change in free energy
relative to the ground-state energy U0, caused by the
phonon-induced atomic displacements, and thermal ex-
citations of the electronic states. ∆F can be obtained

FIG. 1 EOS of Ti. (a) Isotherm at 0 K, together with
experimental data [12] (solid spheres) and theoretical results
[13] (open symbols). (b) Hugoniot of Ti, together with the
experimental data [14, 15].

by calculating the total free energy of the correspond-
ing atomic configuration, {UR}, using a Fermi-Dirac
temperature smearing. 3kBT/2 is the classical phonon
kinetic energy per atom. TSph is the contribution of
vibrational entropy, which can be estimated from the
self-consistent density of states of the phonons g(ν, V )
as follows

TSph(V, T ) =

∫ ∞

0

dwg(ν, V, T )~ν
{
n

(
~ν
kBT

)
−

kBT

~ν
ln

[
1− exp

(
− ~ν
kBT

)]}
(3)

where ν is the phonon frequency. More details about
theoretical background can be found in the SCAILD
method [4].

III. RESULTS AND DISCUSSION

The calculated static equilibrium volumes of α-, ω-,
and β-Ti are 17.4, 17.1, and 17.2 Å3, respectively. For
α- and ω-Ti, the axial c/a ratios are 1.58 and 0.62, re-
spectively. The static equation of state (EOS) of α-, ω-
and β-Ti can be obtained from the static energy-volume
(E-V ) data. The calculated static isotherms of Ti are
shown in Fig.1(a). Our results generally agree with the
experimental data [12] and the theoretical results [13].
We also obtained the Hugoniot curve, which can reflect
the response of material to both pressure and temper-
ature. The PH-VH (Fig.1(b)) at Hugoniot agrees well
with the experiments [14, 15].

The finite temperature phonon dispersion curves of
α-Ti along several high-symmetry directions are dis-
played in Fig.2 (a) and (b). At 0 GPa, the calcu-
lated 300 K phonon dispersions reproduce the overall
trend of the inelastic-neutron-scattering measurement
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FIG. 2 Temperature phonon dispersion curves of Ti. (a) α-Ti at 0 GPa, (b) α-Ti at 53 GPa, (c) β-Ti at 0 GPa, and (d) β-Ti
at 19 GPa.

by Stassis et al. [16]. As the temperature increases,
the striking temperature effects can be seen by studying
the low- and high-temperature phonon dispersions. The
increased splitting between the longitudinal and trans-
verse optic modes is captured. For the 1000 K modes,
there are a little difference between the present phonon
spectra and experimental data, i.e. along Γ-M-K-Γ,
we overestimate the frequencies in acoustic branches.
However, the agreements of the high-energy optical fre-
quencies are quite good. We repeat the phonon calcu-
lations under different pressures and temperatures. At
0 K, all the optical frequencies increase with increasing
pressure, except the acoustic frequencies. As pressure
increases, the softening becomes more and more obvi-
ous. Under compression (above 36 GPa), the frequen-
cies around the Γ point and along Γ-A in the trans-
verse acoustical (TA) branches soften to imaginary fre-
quencies, indicating the structural instability. When
the temperature increases up to a critical temperature
Tc, the imaginary frequencies are promoted to real un-
der high pressure. Figure 2(b) shows the calculated
phonons at 0, 100, and 200 K at 53 GPa. It is obvious
that the SCAILD calculations predict the stability of
α-Ti by promoting the frequencies from imaginary to
real at temperatures 150±50 K. The phonon dispersios
of ω-Ti at different temperatures and pressures are also
obtained in present work. As all the phonon frequencies
are positive in the calculated pressure and temperature
range (0−100 GPa and 0−1500 K), and increase with
the increasing pressure, which indicates the dynamical
stability of ω-Ti, we do not show the calculated disper-

sions here.
For β-Ti, as a high temperature phase, its 0 K phonon

dispersions should be unstable, just as is shown in Fig.2
(c) and (d). The soft mode around P point is respon-
sible for the β to ω transformation, while the unstable
phonon branch in the T-[110] direction corresponds to
the β to α transformation [9]. By comparing the high
temperature data with the 0 K data, it is obvious that
each phonon frequency at high temperature suffers a
shift due to the effects of anharmonicity. At 0 GPa,
above 1000 K, the imaginary modes in the phonon dis-
persions are completly absent. The predicted 1300 K
phonon dispersion of β-Ti agrees well with the exper-
imental data measured at 1293 K [9]. Under 0 and
19 GPa, the predicted stability of β-Ti by promoting
the frequencies of the phonons along the Γ-P-H and Γ-N
symmetry line from imaginary to real for temperatures
950±50 and 750±50 K, respectively.

From the phonon dispersions, we can obtain some
other information, such as the acoustic sound velocities,
which can be obtained from the low spectra. In a cubic
crystal, the acoustic velocities can be calculated for the
longitudinal and transverse waves in the ⟨100⟩, ⟨111⟩,
and ⟨110⟩ directions, using the following equation:

V =
dν

d |q|
(4)

where q is the wave vector. The harmonic elastic con-
stant Cij can be obtained by solving the following:

C11 = ρV 2
L (5)
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TABLE I The acoustic velocities and harmonic elastic constant for β-Ti under HPHT.

P/GPa T/K VL/(km/s) VT1/(km/s) VT2/(km/s) C11/GPa C12/GPa C44/GPa

0 1300 4.52 2.86 1.32 99.6 82.6 39.8

0 [9] 1273 97.7 82.7 37.5

19 800 5.87 2.83 1.53 184.7 140.8 42.8

1000 5.84 2.80 1.59 182.8 136.6 41.7

1200 5.81 2.76 1.85 180.8 128.6 40.9

43 600 7.01 2.85 1.47 290.2 219.9 48.0

800 7.00 2.84 1.61 289.9 216.4 47.6

1000 7.01 2.82 1.64 287.5 212.9 47.0

1200 6.97 2.80 1.68 287.3 210.8 46.3

73 300 7.47 2.87 1.68 363.4 253.3 53.6

600 7.46 2.86 1.73 363.1 251.1 53.3

800 7.45 2.85 1.78 362.5 248.2 53.0

1000 7.44 2.84 1.80 361.8 246.4 52.8

1200 7.43 2.84 7.84 361.2 243.8 52.8

C44 = ρV 2
T1 (6)

1

2
(C11 − C12) = ρV 2

T2 (7)

where the wave velocities VL, VT1, VT2 correspond to
longitudinal ⟨100⟩, transverse ⟨100⟩, and slow trans-
verse ⟨110⟩ waves, respectively. For β-Ti, the calculated
velocities VL, VT1, and VT2 at 1300 K are 4.52, 2.86, and
1.32 km/s, respectively. The extrapolated harmonic
elastic constants for C11, C12, and C44 are 99.6, 82.6,
and 39.8 GPa, which agree with the experimental data
97.7, 82.7, and 37.5 GPa at 1273 K. The more acous-
tic velocities and elastic constants are shown in Table
I. The acoustic velocities increase with the increasing
pressure and decrease with the increasing temperature,
especially for VT2. It is noted that the variation of VT2

is a direct response of the phonon branch in the T-[110]
direction, and it can reflect the stability of β phase. On
the other hand, the predicted elastic constant C11 is
larger than C12 at the given pressure and temperature
state, which indicates β-Ti is mechanical stable.

Considering the dynamical stabilities of α-, ω-, and
β-Ti, we can obtain the dynamical stable regions of α-,
ω-, and β-Ti in the P-T phase diagram. As is shown in
Fig.3, below 36 GPa, α-Ti is a dynamical stable phase.
As pressure increases, Tc in which the unstable phase
transforms to stable phase increases rapidly. The tran-
sition temperatures as functions of pressure can be de-
scribed as a second polynomial:

Tc = 1250− 63.18P + 0.79P 2 (8)

For ω-Ti, it is a dynamical stable phase in the entire
calculated P-T region. For β-Ti, Tc decreases with the
increasing pressure. A second polynomial can describe
Tc as functions of pressure:

Tc = 950− 8.60P − 0.01P 2 (9)

FIG. 3 Dynamic stability of Ti. Solid line and dashed line
are fitted stable and unstable boundaries, respectively.

The phonon dispersion relations, while interesting,
are not the main goal of this work. We want a solid
method to deal with lattice dynamics for strongly an-
harmonic dynamically unstable systems. To test this,
we calculated the Gibbs free energies of Ti. In Fig.4 we
present the calculated phase diagram of Ti, together
with other theoretic results [17, 18] and experimen-
tal data [8]. The transition temperatures of ω-α and
α-β locate at 150±50 and 1150±50 K at zero pressure,
which are a little larger than previous QHA data of 146
and 1143 K [19]. The predicted triple point locates at
8.8 GPa, 975 K, which is close to the experimental data
of 9 GPa, 940 K [5]. The present results generally ac-
cord with previous QHA data [19]. The main difference
is the slope (dT/dP ) of the ω-β boundary. Consider-
ing the phonon-phonon interactions, the present slope
is much larger than the results in QHA. The present
slope of α-ω, α-β, and ω-β boundary are 94, −17, and
6 K/GPa, respectively. The Hugoniot PH-TH curve is
also shown in Fig.4. It can be seen that the shock
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FIG. 4 Phase diagram of Ti under high-pressure and high-
temperature.

induced α-ω transition locates at ∼2.2 GPa, which is
smaller than the shock transition pressure ∼12 GPa
[14]. The reason is that the hysteresis of the α-ω trans-
formation is so great that the high pressure phase is
retained after removal of the load. Application of shear
stress is found to reduce the hysteresis of the trans-
formation, allowing the equilibrium transition pressure
at room temperature to be estimated at 2.0±0.3 GPa
[20]. In α-ω transition, our results reveal a 0.9% vol-
ume reduction (shown in Fig.1(b)), which is a little
smaller than the experimental data 1.2%. The small
volume change in this transition is not surprised be-
cause both phases possess a hexagonal symmetry and
similar atomic packing. As is shown in Fig.4, the Hugo-
niot traverses the β phase before crossing the melting
curve and indicates the shock induced ω-β transition
around 50−60 GPa and 1200−1300 K, which agree with
the results of Kerley [18]. In the present work, there are
no volume break can be observed in ω-β transition.

IV. CONCLUSION

We employ SCAILD methods to investigate the tem-
perature dependent phonon spectra of Ti. In the cal-
culations, the phonon-phonon interactions were consid-
ered. By reproducing the observed high temperature
phonon frequencies at zero pressure with good accu-
racy, we predicted the high temperature phonons under
high pressure, and obtained the critical temperature, in
which the frequencies were promoted from imaginary
to real. And then the stable regions of α-, ω-, and
β-Ti were predicted successfully. From the phonon dis-
persions, we also extrapolated the acoustic velocities
and harmonic elastic constants. By comparing the free
energies, we obtained the Hugoniot and the phase di-
agram of Ti. Excellent agreement with experimental
results in present simulations indicates the usefulness
of the SCAILD method and it can be designed to work
for much more strongly anharmonic systems where the
traditional QHA fails.
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