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The effect of the interaction between nanopore and chain monomer on the translocation of
a single polymer chain confined in a finite size square through an interacting nanopore to a
large space has been studied by two-dimensional bond fluctuation model with Monte Carlo
simulation. Results indicate that the free energy barrier before the successful translocation
of the chain depends linearly on the chain length as well as the nanopore length for different
pore-polymer interaction, and the attractive interaction reduces the free energy barrier,
leading to the reduction of the average trapping time.
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I. INTRODUCTION

The translocation of biopolymers through a nanopore
plays an important role in many biological phenomena.
Examples include translocation of protein across a cellu-
lar membrane or endoplasmic reticulum [1, 2], injection
of RNA and RNA from a virus to bacteria after their
synthesis [3], gene swapping between the guest and the
host bacteria through pili, etc. Understanding this pro-
cess will enable us to deepen our comprehension of many
fundamental problems in cell biology, and may eventu-
ally provide various useful applications in biotechnolo-
gies and industrial processes, e.g., in DNA sequencing
[4, 5], in oil recovery and separation, and in gene ther-
apy [6, 7], etc. Accordingly, the polymer translocation
dynamics has attracted a lot of attention from experi-
ments [5−9], analytical theories [10−14], and computer
simulations [15−24].

When the size of chain molecule is larger than that of
the cross section of nanopore, the polymer chain suffers
a free energy barrier due to the loss of a great number of
available configurations [10, 11], so that most polymer
translocation phenomena require a driving force, such
as ratchet [25, 26], electric fields [9, 21, 27, 28], chemical
potential gradients [29, 30] and selective adsorption on
one side of the membrane [31]. Muthukumar studied
the translocation of a single Gaussian chain from one
sphere to another larger sphere through a narrow pore
theoretically [32]. Results indicated that the interaction
between the polymer and pore significantly modifies the
entropic barrier landscape of translocation. As the pore
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length increased, the translocation process underwent a
transition from entropic barrier mechanism to a mecha-
nism dominated by the pore-polymer interaction ε [32].
This shift in mechanism leads to nonmonotonic depen-
dence of the translocation time τ on the pore length
[11]. A Gaussian chain, however, can be used only to
describe polymer translocation in a θ solution, which is
difficult to make in experiments. The excluded volume
effect significantly affects the conformational entropy of
confined polymers and their dynamic behaviors. The
authors utilized the self consistent field theory to cal-
culate the translocation time by taking the excluded
volume effect into design consideration [32]. As ex-
pected, their results differ from those predicated for the
Gaussian chain. The self consistent field theory, how-
ever, can handle only small excluded volume parameter
and is not suitable for calculating the translation time
when the excluded volume parameters become large. In
our previous work [19, 33], the translocation of a single
self-avoiding walk (SAW) chain, confined in a finite size
square, through a non-interacting nanopore has been
studied by Monte Carlo simulation method. We found
that the entropy barrier height decreases linearly with
the polymer chain length N and increases with the pore
length. However, the translocation time depends non-
monotonically on the polymer length. The excluded
volume effect causes this nontrivial dependence.

In the present work we extend our previous work [19,
33] by considering the effect of the pore-polymer inter-
action on the translocation of a single SAW chain from
a confined square to another lager square. The depen-
dence of the free energy barrier and the translocation
time on the interaction is investigated. We find that the
attractive pore-polymer interaction reduces the free en-
ergy barrier of the chain when entering the nanopore,
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which leads to the decrease of the trapping time be-
fore the successful translocation of the chain. How-
ever, strong attractive and repulsive interactions make
monomers difficult to leave and enter the nanopore re-
spectively, resulting in the nonmonotonical dependence
of the translocation time on the pore-polymer interac-
tion. Further study on the detailed translocation dy-
namics of the chain is presented to investigate how the
pore-polymer interaction affects the translocation of the
chain.

II. MODEL AND SIMULATION METHOD

The two-dimensional bond fluctuation model (BFM)
combined with single-segment Monte Carlo moves was
used in our simulation, since the excluded volume effect
plays an important role on the static and dynamical
properties of confined polymer chain in the lower di-
mension [34]. Two square lattice spaces with difierent
sizes R1=30 and R2=800 are connected by a nanopore
length M . The nanopore is narrow enough so as to en-
sure that the polymer chain was stretched out in the
nanopore (Fig.1).

A chain of length N is initially placed in the donor
square (of size R1) with one end positioned at the pore
entrance. The interaction between monomers and that
between monomer and surface are supposed to be self-
avoiding. The chain is then allowed to reach an equi-
librium conformation using the standard Monte Carlo
method, but with the constraint that the first monomer
placed at the pore entrance, is fixed. This constraint
makes the chain kept in the donor space during the re-
laxation.

Once the chain is in the equilibrium conformation,
the first monomer at the pore entrance is released
from its constraint and the simulation of the polymer
chain moves through the pore begins. When monomers
are inside the pore, the average interaction energy
per monomer is taken as E. The reduced interaction
ε=E/(kBT ) is used in the work with kB (Boltzmann
constant) and T (temperature). The trial move will be
accepted with a probability p=min(1, e−∆E) if the self-
avoidance is satisfied. Here ∆E is the energy change for
each trial move. The time unit is one Monte Carlo step
(MCS) during which N trail movements are attempted.
In this work, we put aside the question of how the chain
first enters the nanopore, focusing, instead on the dy-
namics once one end has been inserted. So, the first
monomer is not allowed to go back to the donor space
during the translocation.

The typical motion of the polymer chain viewed in
our simulation is as follows. Once the first monomer
at the entrance of the pore is loosed, the chain con-
tinues to perform its conformational changes inside the
donor square. After a certain time, the front end of the
chain spills into the nanopore and quickly arrives at the
receipt square. However, this step does not necessarily

FIG. 1 Schematic representation of a N -monomer polymer
chain in the process of the translocation through a nanopore
of length M from the confinement. The nanopore is so nar-
row that the “hairpin” translocation is forbidden.

lead to a successful translocation in spite of the fact that
the monomer density is higher in the donor. The free
energy barrier arising from the losing of chain confor-
mation will pull the chain back into the nanopore. The
chain will undergo back and forth motion if the numbers
of monomer entering the receipt square are smaller than
a critical number. The time for the chain consumed in
this period to overcome the free energy barrier is the
trapping time τtrap. In the end, when enough monomers
above the critical numbers are pushed inside the recip-
ient square by a sequence of random events, the chain
will spontaneously transport into the receipt square and
a successful translocation occurs. The elapsed time for
the final successful escape is named translocating time
τtrans. Namely, during the translocating time τtrans the
chain successfully worms through the pore without to-
tally pulled back. In this work, we just present the
effect of interaction on the detailed translocation dy-
namics of chain through the relationship between the
average trapping time 〈τtrap〉 and N and M for differ-
ent pore-polymer interaction ε, and all data of 〈τtrap〉
are averaged over at least 103 independent runs. And,
the standard statistical error is less than 5%. There-
fore, we do not include the error bars in these figures,
similar to what Luo has done [22].

III. SIMULATION RESULTS AND DISCUSSION

The dependence of 〈τtrap〉 on N is presented in Fig.2
for different interaction ε. It can be seen that, for each
value of ε, lg〈τtrap〉 decreases linearly with the increases
of N ,

lg 〈τtrap〉 ∝ −N (1)

And, the slopes of the lines for different ε are all the
same.

In order to understand these observations, one notes
that with N increases, the confinement depresses the
conformational entropy of the chain, and hence in-
creases the free energy of the chain in the donor. It
takes shorter time for the chain to go over the free en-
ergy barrier. Based on Arrhenius equation the reaction
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FIG. 2 The dependence of the average trapping time 〈τtrap〉
on the chain length N for different pore-polymer interaction
ε. The length of nanopore M=6.

FIG. 3 The dependence of the average trapping time 〈τtrap〉
on the interaction ε. The length of nanopore M=6.

rate k (∼τtrap
−1) for the present situation is given by

k ∝ exp
(
−∆F

kBT

)
(2)

Where ∆F is the free energy barrier. Combining with
Eq.(1), we have

∆F ∝ −N (3)

That is to say, the free energy barrier for the chain
trapping depends linearly on N . In this situation, since
the length of M keeps constant, the interaction ε alters
the same free energy barrier for different N , namely, ε
just influences the intercept and, the slopes of the lines
for systems with different ε are therefore the same.

From Fig.2 it can be seen that, for the same N , 〈τtrap〉
decreases with the increase of pore-polymer ε. To clarify
this effect, the simulations were performed for a range
of the interaction −3.5≤ε≤3.0 with N=101 and 151. It
can be seen that, for ε>−0.4, there is linear relationship
between lg〈τtrap〉 and ε (Fig.3). It is easily understood
since increasing ε will increase the free energy barrier.
According to Arrhenius equation, 〈τtrap〉 exponentially
increases with ε.

For the interacting nanopore, with the pore length
increasing, the free energy barrier for the chain trapping

FIG. 4 The average trapping time 〈τtrap〉 as a function of
the length of nanopore M for different interaction ε. The
chain length N=101.

alters, leading to 〈τtrap〉 changes accordingly. Figure 4
displays the dependence of 〈τtrap〉 on the length of the
nanopore M for different ε. The logarithm of 〈τtrap〉,
increases linearly with M ,

lg〈τtrap〉 ∝ M (4)

Combining with Eq.(2), we yields

∆F ∝ M (5)

Namely, the free energy barrier of ∆F is proportional
to M , which is similar to the dependence of ∆F on N
(Eq.(3)). However, different from Fig.3, the slope of the
line becomes large with increasing ε. It is easy to be
understood. Since the free energy barrier is related to
M , the change of ε will influence the front factor of the
right-hand side of Eq.(5), leading to the alteration of
the line slope accordingly.

IV. CONCLUSION

In conclusion, we investigated the translocation of
a single polymer chain confined in a finite size square
through an interacting nanopore to a lager size square
by using two-dimensional BFM with Monte Carlo simu-
lation. We find that the logarithm of the average trap-
ping time of the chain, lg〈τtrap〉, depends linearly on
the chain length N as well as the length of nanopore
M for different pore-polymer interaction ε. The slope
of the line for the former keeps constant, however, that
for the latter varies with increasing ε. Based on the Ar-
rhenius equation, the free energy barrier that the chain
overcomes before translocation depends linearly on N
as well as M .
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