ARTICLE # First Principle Calculation of Electric and Magnetic Properties for New Half-metal Fe₂ScO₄ Jun Liu^{a,b*}, Xin-qiang Wang^b, Yu Liu^b, Hui-ning Dong^b - a. College of Mathematics and Physics, Chongqing University, Chongqing 400030, China; b. Institute for Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing - b. Institute for Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (Dated: Received on August 28, 2006; Accepted on January 14, 2007) The new half-metals Fe₂ScO₄ and FeSc₂O₄ were designed and their spinel structures were optimized based on the first-principle pseudo-potential method. Their electric and magnetic properties including molecular magnetic moments and electronic structures were calculated and analyzed, and then were compared with those of Fe₃O₄. The calculation showed that Fe₂ScO₄ and FeSc₂O₄ were both new ferromagnetic II B-type half-metals, but Fe₃O₄ was ferrimagnetic. The molecular magnetic moment of Fe₂ScO₄ is about 7.28 $\mu_{\rm B}$, which is much larger than the 4.0 $\mu_{\rm B}$ of Fe₃O₄ and 3.96 $\mu_{\rm B}$ of Fe₂ScO₄. The molecular magnetic moment of Fe₂ScO₄ wainly came from the spin-polarization of Fe₃d electrons. Also, the conductance of Fe₂ScO₄ was a little larger than that of Fe₃O₄. For Fe₂ScO₄, the average electronic structure of Sc on A-sites was Sc⁺3s²3p⁴3d² and that of Fe on B-sites was Fe²⁺t_{2g}^{3†}t_g^{2†}t_{2g}[‡]. It can be predicted that the new half-metal Fe₂ScO₄ has wider application ground in spin electronic instruments because of its larger magnetoresistance compared to Fe₃O₄ and FeSc₂O₄. Key words: Fe₂ScO₄, Fe₂ScO₄, Half-metal, Electronic structure, Molecular magnetic moment ### I. INTRODUCTION It has been found recently that transmission of charges and spins of electrons may be simultaneously controlled in half-metals, which theoretically have 100% spin polarization of electrons at Fermi level [1-6]. If more dimensions are considered in magnetoresistance materials, more new applications will be proposed and more new spin electronic instruments will possibly be invented [7-14]. Therefore, it may be predicted that half-metal spin devices such as random-access memories, magnetic recording and writing head, magnetic sensors and spin transistors will have wider application ground than transition metal spin devices. To date, many half-metals such as Fe₃O₄, CrO₂, FeCoS₂, $CuMnSb,\ La_{0.7}Sr_{0.3}MnO_3,\ Sr_2FeMoO_6,\ Co_{1-x}Fe_xS_2,$ Ti₂Mn₂O₇, and PdMnTe have been found theoretically [8-19]. However, the room-temperature spinpolarization of these half-metals is often lower than 100% experimentally [18,19]. As a kind of II B-type half-metal, spinel Fe₃O₄ has been found to have larger room-temperature spin-polarization and higher courier temperature than other half-metals [18-21]. Therefore, spinel Fe₃O₄ is thought to have more potential application than other half-metals. However, the room temperature magnetoresistance of multilayer films, granular films and powder films composed of Fe₃O₄ is still not large enough to satisfy the demands of its application. One of main reasons is that the conductance of Fe₃O₄ is much lower than that of transition metals and their alloys, because Fe3d and Fe4s electrons are extremely localized by hybrid of Fe3d and O2p orbits [22-25]. Another reason is that the molecular magnetic moment $4.0 \mu_B$ of Fe₃O₄ is too small so there is not enough spincorrelation scattering on transmitted electrons in Fe₃O₄ in an applied magnetic field [18-22]. Therefore, it is necessary to probe new half-metal materials with larger conductance and molecular magnetic moment. Some research work has been carried on to improve electric and magnetic properties of the half-metal Fe₃O₄. For example, Chen et al. experimentally doped some Znions into the half-metal Fe₃O₄, and then produced the new half-metal $Zn_xFe_{3-x}O_4$. Moreover, $Zn_xFe_{3-x}O_4$ has much larger room-temperature magnetoresistance than Fe₃O₄ [18]. Szotek et al. theoretically doped Coions or Ni-ions into Fe_3O_4 and designed $Ni_xFe_{3-x}O_4$ and $Co_xFe_{3-x}O_4$, and then carried on an ab initio study on charge order in $Ni_x Fe_{3-x} O_4$, $Co_x Fe_{3-x} O_4$, and $\mathrm{Fe_3O_4}$ in detail. They found that both $\mathrm{Ni}_x\mathrm{Fe}_{3-x}\mathrm{O}_4$ and $Co_x Fe_{3-x}O_4$ have half-metallicity [21,22]. In this work, Sc atoms were suitably doped into the half-metal Fe_3O_4 , and Fe atoms on A-sites or on B-sites were replaced by Sc atoms. Then the geometrical structures of Fe_2ScO_4 and $FeSc_2O_4$ were both optimized based on the first principle pseudo-potential method, which is used effectively to design new materials and probe new properties of materials [26-35]. The electric and magnetic properties of Fe_2ScO_4 were studied and compared with those of Fe_3O_4 in system, and then the mechanisms were analyzed in detail. $^{^*}$ Author to whom correspondence should be addressed. E-mail: liujun@cqupt.edu.cn ### II. MODEL AND METHOD Geometrical structures of Fe_3O_4 , Fe_2ScO_4 , and Fe_2ScO_4 were optimized, and then their electric and magnetic properties were calculated based on the first principle pseudo-potential method. In the self-correction calculation, the k-point set was $4\times4\times4$. Their wave functions were expanded with plane-wave pseudo-potentials, and the exchange correlation functions used were the Perdew-Burke-Ernzerh functions (PBE) of three nonlocal gradient-corrected exchange-correlation functions (GGA). The cutoff energy was 340 eV. An optimized primitive cell of Fe₂ScO₄ is shown in Fig.1. There are 14 atoms including two Sc atoms on A-sites, four Fe atoms on B-sites and eight O atoms on other sites in a primitive cell. Fractional coordinates of the two Sc atoms are (0.125, 0.125, 0.125) and (0.875,0.875, 0.875), respectively. Six 0.5-Fe atoms lie in the center of six faces (100) and one Fe-atom lies in the body center of the primitive cell. The crystal lattice constant and the crystal obliquity are 5.9355 Å and 60°, respectively. The volume is 147.858 Å³ and the space group is m-3m. On the other hand, both Fe₃O₄ and FeSc₂O₄ have similar spinel structures of primitive cells. In the primitive cell of Fe₃O₄, all Fe atoms are on the A-sites and B-sites. In the primitive of $FeSc_2O_4$, two Fe atoms are on the A-sites and four Sc atoms are on the B-sites. FIG. 1 An optimized primitive cell of the new half-metal Fe₂ScO₄, where the crystal lattice constant and the crystal obliquity are 5.9355~Å and 60° , respectively. The total spin-polarized state densities of $\mathrm{Fe_3O_4}$ were calculated and are shown in Fig.2, where curves above and below the Fermi level correspond to up-spin and down-spin densities, respectively. From Fig.2, $\mathrm{Fe_3O_4}$ is a kind of B-type half-metal because there are only down-spin electrons at the Fermi level. These curves are basically in accord with experiments and those calculated by Szotek et~al.~[21,22]. Electronic charges and magnetic moments of all atoms in a Fe₃O₄ primitive cell were calculated, as shown in Table I. In the table, the unit of spin is hbar and 1 hbar=2 $\mu_{\rm B}$. From Table I, the magnetic moment 0.1 $\mu_{\rm B}$ of an O-atom is very weak. The magnetic moments of Fe-atom on A-sites are $-3.6\,\mu_{\rm B}$ and those of Fe FIG. 2 The total spin-polarized state densities of Fe₃O₄. atoms on B-sites are $+3.6~\mu_B$, which shows that Fe₃O₄ is ferrimagnetic. The sum of magnetic moments of all atoms in a Fe₃O₄ primitive cell is 8.0 μ_B . There are two molecules in an Fe₃O₄ primitive cell, so the molecular magnetic moment of Fe₃O₄ is 4.0 μ_B , which is equal to that calculated by Szotek *et al.* and basically agrees with the 4.1 μ_B obtained experimentally [21,22]. These results show that it is reasonable to optimize spinel structures of Fe₂ScO₄ and FeSc₂O₄, and calculate their electric and magnetic properties based on the first principle pseudo-potential method. TABLE I Electronic charges and magnetic moments of all atoms in a $\mathrm{Fe_3O_4}$ primitive cell | Atom | Electron in orbit | | | | Charge/e | Spin/hbar | |------|-------------------|------|------|-------|----------|-----------| | | \mathbf{s} | p | d | Total | | | | О | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | O | 1.86 | 4.85 | 0 | 6.71 | -0.71 | 0.05 | | Fe | 0.31 | 0.50 | 6.20 | 7.01 | 0.99 | -1.80 | | Fe | 0.31 | 0.50 | 6.20 | 7.01 | 0.99 | -1.80 | | Fe | 0.35 | 0.53 | 6.21 | 7.08 | 0.92 | 1.80 | | Fe | 0.35 | 0.53 | 6.21 | 7.08 | 0.92 | 1.80 | | Fe | 0.35 | 0.53 | 6.21 | 7.08 | 0.92 | 1.80 | | Fe | 0.35 | 0.53 | 6.21 | 7.08 | 0.92 | 1.80 | In this work, the electric and magnetic properties of the half-metal Fe_2ScO_4 are studied because the molecular magnetic moment $7.14~\mu_B$ of Fe_2ScO_4 is much larger than $4.0~\mu_B$ of Fe_3O_4 and $3.96~\mu_B$ of $FeSc_2O_4$. Here the spinel structure of a Fe_2ScO_4 primitive cell is optimized and the optimized positional parameters of atoms are compared with those not optimized. It was found that sites of Sc atoms and Fe atoms do not vary af- FIG. 3 Total spin-polarized state densities of half-metals Fe₂ScO₄ (a) and FeSc₂O₄ (b). ter optimization, but O atoms all move a little toward Fe atoms. As an example, the fractional coordinate of one of two O atoms near Sc atoms varies from (0.2549, 0.2549, 0.2549) to (0.2581, 0.2581, 0.2581). Similarly, that of the other atom varies from (-0.2549, -0.2549) to (-0.2581, -0.2581). This shows that O–Fe covalent bonds are stronger in Fe₂ScO₄ than in Fe₃O₄. The mechanism is that an Fe-atom has more 3d-electrons than one Sc-atom; hence there are stronger hybrid orbits of O2p and Fe3d than those of O2p and Sc3d in a Fe₂ScO₄ primitive cell. ### III. RESULTS AND DISCUSSION ### A. Total spin-polarized densities of states of Fe_2ScO_4 and FeSc_2O_4 Total spin-polarized state densities of Fe₂ScO₄ and FeSc₂O₄ were both calculated and are shown in Fig.3 (a) and (b), respectively. In Fig.3 real lines and dashed lines correspond to the up-spin sub-bands and spindown sub-bands, respectively. From Fig.3, we can see there are only down-spin sub-bands at the Fermi level for both Fe₂ScO₄ and FeSc₂O₄. Therefore, Fe₂ScO₄ and $FeSc_2O_4$ both have -100% spin-polarization at the Fermi level and they are both II B-type half-metals. This is similar to Fe₃O₄. However, both Fe₂ScO₄ and FeSc₂O₄ are approximatively ferromagnetic according to our calculation that will be given later. This is different from ferrimagnetic Fe₃O₄. On the other hand, the state density 10.4 electron/eV of Fe₂ScO₄ is much larger than the 7.5 electron/eV of FeSc₂O₄ at the Fermi level. This shows that there are possibly more polarons to transit on B-sites in Fe₂ScO₄ than in FeSc₂O₄, so Fe₂ScO₄ possibly has larger conductance than FeSc₂O₄ and Fe₃O₄ [18]. From the definition of magnetoresistance $MR = [R(H) - R(0)]/R(0) \times 100\%$, the magnetoresistance of materials will be improved if their variation of resistance is enhanced and the zero magnetic field resistance is lowered. Therefore, the half-metal Fe₂ScO₄ possibly has larger magnetoresistance than $FeSc_2O_4$ [5,6,18]. ## B. Molecular magnetic moments of half-metals Fe_2ScO_4 and FeSc_2O_4 Electronic charges and magnetic moments of atoms in a Fe₂ScO₄ primitive cell are shown in Table II. From Table II, the distribution of magnetic moment of atoms is 0.34 $\mu_{\rm B}$ for an O-atom, 0.14 $\mu_{\rm B}$ for an Sc-atom and $3.76~\mu_{\rm B}$ for an Fe-atom. Summing up all magnetic moments of 14 atoms, we can know the total is 18.04 $\mu_{\rm B}$ for atoms of a Fe₂ScO₄ primitive cell. The magnetic moment of covalent bonds were also calculated and shown in Table III. From Table III, there are 0.04 $\mu_{\rm B}$ for one of eight O-Sc bonds, $-0.1 \mu_B$ for one of 24 O-Fe bonds, $-0.02 \mu_{\rm B}$ for one of 24 O-O bonds and $-0.20 \mu_{\rm B}$ for one of six Fe-Fe bonds. Summing up magnetic moment of all bonds yields, $-3.76 \mu_{\rm B}$ from bonds of a Fe₂ScO₄ primitive cell. Therefore the magnetic moment of a Fe₂ScO₄ primitive cell is 14.28 μ_B . There are two molecules in one Fe₂ScO₄ primitive cell so that the molecular magnetic moments of Fe₂ScO₄ must be about 7.14 $\mu_{\rm B}$. Similar calculation carried out on FeSc₂O₄ shows that the molecular magnetic moments of FeSc₂O₄ total about 3.96 μ_B , which is much lower than the $7.14 \mu_{\rm B}$ of Fe₂ScO₄. If half-metals are in the same applied magnetic field, the larger molecular magnetic moments possibly result in stronger spincorrelation scattering for conductive electrons, and then larger variation of resistance. Therefore, it can be predicted that Fe₂ScO₄ will have larger magnetoresistance than FeSc₂O₄, so in this work we focus on the electric and magnetic properties of the half-metal Fe₂ScO₄. From Fig.3(a), for Fe₂ScO₄ the number of up-spin electrons is equal to that of down-spin electrons when their energy is far lower than the Fermi energy. However, there is much difference between up-spin and down-spin state densities near the Fermi level. This shows that the large magnetic moments of Fe₂ScO₄ FIG. 4 Spin-polarized energy bands of Fe₂ScO₄, where (a) and (b) correspond to up-spin sub-bands and down-spin sub-bands, respectively. TABLE II Electronic charges and magnetic moments of all atoms in a Fe_2ScO_4 primitive cell | Atom | Electron in orbit | | | | Charge/e | Spin/hbar | |---------------------|-------------------|------|------|-------|----------|-----------| | | s | p | d | Total | | | | О | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | O | 1.85 | 4.91 | 0 | 6.76 | -0.76 | 0.17 | | Sc | 2.13 | 6.2 | 1.39 | 9.72 | 1.28 | 0.07 | | Sc | 2.13 | 6.2 | 1.39 | 9.72 | 1.28 | 0.07 | | Fe | 0.33 | 0.53 | 6.26 | 7.12 | 0.88 | 1.88 | | Fe | 0.33 | 0.53 | 6.26 | 7.12 | 0.88 | 1.88 | | Fe | 0.33 | 0.53 | 6.26 | 7.12 | 0.88 | 1.88 | | Fe | 0.33 | 0.53 | 6.26 | 7.12 | 0.88 | 1.88 | TABLE III Calculated parameters of covalent bonds of Fe_2ScO_4 | Bond | Population/e | Spin/hbar | Length/Å | No. of bonds | |-------|--------------|-----------|----------|--------------| | O-Sc | 0.50 | 0.02 | 1.93445 | 8 | | O-Fe | 0.25 | -0.05 | 2.03314 | 24 | | O-O | -0.04 | -0.01 | 2.77651 | 12 | | Fe-Fe | -0.33 | -0.10 | 2.96773 | 6 | | O-O | -0.05 | -0.01 | 2.97081 | 12 | come mainly from the spin-polarization of state densities near the Fermi level. ### C. Spin-polarized energy bands of Fe₂ScO₄ The spin-polarized energy bands of Fe_2ScO_4 are shown in Fig.4, where (a) and (b) correspond to up- spin sub-bands and down-spin sub-bands, respectively. From Fig.3, the down-spin sub-bands go through the Fermi level, but the up-spin sub-bands don't. This shows that there are only down-spin electrons at the Fermi level. However, as shown in Fig.4, there are no parabolas near the Fermi level. This shows that electrons at the Fermi level are extremely localized. On the other hand, we find the energy band curves of ${\rm Fe_2ScO_4}$ at the Fermi level are more acclivitous than those of ${\rm Fe_3O_4}$, which are also calculated using a similar method. This shows the conductance of ${\rm Fe_2ScO_4}$ is a little larger than that of ${\rm Fe_3O_4}$. Therefore, ${\rm Fe_2ScO_4}$ is a typical II-B half-metal with larger conductance than ${\rm Fe_3O_4}$. ### D. Spin-polarized partial densities of states Figure 5 shows the spin-polarized partial state densities of the new half-metal Fe₂ScO₄, where (a), (b), and (c) correspond to the s-orbits, p-orbits and dorbits, respectively. The solid lines and the dashed lines corrspond the state densities of up-spin sub-bands and those of down-spin sub-bands respectively. The calculated electrons include those of O2s²2p⁴, Fe3d⁶4s² and Sc3s²3p⁴3d¹4s². In Fig.5(a), there are two main-peaks in the state density curves of s-electrons. The number of up-spin s-electrons is almost equal to that of down-spin s-electrons, so there is almost no spin-polarization for selectrons. The first main-peak clearly comes from Sc3s electrons and the second main-peak mainly comes from some O2s² electrons. Near the Fermi energy, there is a small quantity of Fe4s and Sc4s electrons. In Fig.5 (b) and (c), there is almost no spin-polarization for the O2p electrons about -28.0 eV energy (in the third peak). Therefore, the peaks 1-3 have no contribution to the magnetic moments of Fe₂ScO₄. From the width of peaks 1-3, the above electrons are highly localized. Comparing Fig.3 with Fig.5, we can conclude that the state densities near the Fermi level mainly come from hybrid orbits of O2p and Fe3d or Sc3d, which cor- FIG. 5 Partial state densities of Fe₂ScO₄, where (a), (b) and (c) correspond to the s-orbits, p-orbits and d-orbits, respectively. The solid lines and the dashed lines up-spin sub-bands the down-spin sub-bands, respectively. respond to main peaks 4 to 7. The number of up-spin p-electrons is a little larger than that of down-spin p-electrons, but the number of up-spin d-electrons is much larger than that of down-spin d-electrons. This shows that there is positive spin-polarization for the half-metal Fe₂ScO₄ and the magnetic moments of Fe₂ScO₄ come mainly from 3d-electrons. However, Table II shows that Sc3d electrons have little contribution for the molecular magnetic moments of Fe₂ScO₄. ### E. Electronic structure of Fe₂ScO₄ In order to analyze the electronic structure of Fe₂ScO₄, parameters of all atoms and covalent bonds in a Fe₂ScO₄ primitive cell were calculated. Table II and III show the parameters of atoms and covalent bonds, respectively. The charges and the number of electrons including s-electrons, p-electrons, d-electrons and total electrons are given in Table II. Table III shows the parameters of covalent bonds including the charge population, the spins and the length of bonds. From Tables II and III, the charges of an O-atom, an Fe-atom and an Sc-atom are -0.76, 0.88 and 1.28electrons, respectively. The charge number of covalent bonds is 0.50 electrons (e) for O-Sc, 0.25 e for O-Fe, -0.04 e or -0.05 e for O-O, and -0.33 e for Fe-Fe. From the electronic charges of Sc atoms and the charge number of O-Sc bonds, some Sc4s electrons are transferred to O atoms, and other Sc4s electrons belong to both Sc atoms and O atoms because of Sc-O covalent bonds, which are caused by hybrid orbits of O₂p and S_c₃p or S_c₄d. Furthermore, the calculated length 1.93445 Å for O-Sc bonds is shorter than that of other covalent bonds: 2.03314 Å for O-Fe, 2.77651 Å for O-O, and 2.96773 Å for Fe-Fe. This shows that O-Sc covalent bonds are very strong. Therefore, combining Table II and Fig.5, the electronic structure of the Sc-atom can be written as Sc⁺3s²3p⁴3d² and the number of up-spin electrons is equal to that of downspin electrons approximatively. From Fig.5(c) and Table II, some Fe4s electrons are transferred to O atoms and other Fe4s electrons belong to both Fe atoms and O atoms because of strong O–Fe covalent bonds, which are caused by hybrid orbits of O2p and Fe3d orbits. There are six Fe3d electrons including five up-spin electrons and one down-spin electrons. From theories of molecular orbits [18,22], it is concluded that there are four Fe3d electrons in t_{2g} orbits, where three electrons are up-spin and one is down-spin. Similarly, there are two up-spin Fe3d-electrons in e_g orbits in an Fe-atom. Therefore, the average electronic structures of Fe atoms can be approximated as $Fe^{2+}t_{2g}^{3\uparrow}t_{g}^{2\uparrow}t_{2g}^{\downarrow}$. In a word, magnetic moments of Sc atoms are very weak and those of Fe atoms are very strong so that Fe_2ScO_4 is ferromagnetic. This is the reason why Fe_2ScO_4 has much larger molecular magnetic moment than Fe_3O_4 . From Table III the length of O-Fe bonds is much shorter than that of Fe-Fe bonds. This shows O-Fe bonds are very strong, but Fe-Fe bonds are very weak, so most Fe3d electrons are localized, but a small quantity of electrons are itinerant. Therefore, the conductance of Fe₂ScO₄ is a little higher than that of Fe₃O₄. ### IV. CONCLUSION Based on these calculations, Fe₂ScO₄ and FeSc₂O₄ are both new ferromagnetic II-B-type half-metals, but Fe₃O₄ is ferrimagnetic. The molecular magnetic moment of Fe₂ScO₄ is 7.14 μ_B , which is much larger than the 4.0 μ_B of Fe₃O₄ and 3.96 μ_B of FeSc₂O₄. The conductance of Fe₂ScO₄ is a little larger than that of Fe₃O₄. There are hybrid orbits of O2p and Fe3d or Sc3d orbits near the Fermi level, which result in localization of Fe3d or Sc3d electrons of Fe₂ScO₄. It is predicted that Fe₂ScO₄ has larger room-temperature magnetoresistance, and therefore wider application ground than FeSc₂O₄ and Fe₃O₄. ### V. ACKNOWLEDGMENTS This work was supported by the "863" Grant Foundation of China (No.2005AA12373), Chongqing Natu- ral Science Foundation (No.2005BB4070, No.kj060515, and No.kj050502). - A. Mauger and D. L. Mills, J. Appl. Phys. 55, 2315 (1983). - [2] R. A. de Groot, F. M. Mueller, P. G. Van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). - [3] S. Rubin, M. Holdenried, and H. Micklitz, J. Magn. Magn. Mater. 203, 97 (1999). - [4] B. Hackenbroich, H. Zare-Kolsaraki, and H. Micklitz, Appl. Phys. Lett. 81, 514 (2002). - [5] J. M. D. Coey and M. Venkatesan, J. Appl. Phys. 91, 8345 (2002). - [6] M. Kopcewicz, F. Stobiecki, J. Jagielski, B. Szymanski, M. Urbaniak, and T. Lucinski, J. Magn. Magn. Mater. 286, 437 (2005). - [7] Z. S. Jonathan, Phys. C **350**, 215 (2001). - [8] S. A. Wolf, D. D. Acoschalom, and R. A. Buhrman, Science 294, 1488 (2001). - [9] C. M. Fang, G. A. de Wijs, and R. A. De Groot, J. Appl. Phys. 91, 8340 (2002). - [10] C. Y. Fong, M. C. Qian, L. H. Yang, J. E. Pask, and S. Dag, Appl. Phys. Lett. 84, 239 (2004). - [11] P. A. Dowben and R. Skomski. J. Appl. Phys. 95, 7453 (2004). - [12] X. G. Wan and X. Hu, Physics 35, 713 (2006). - [13] W. Y. Liu, Z. W. Fu, and Q. Z. Qin, Chin. J. Chem. Phys. 18, 1043 (2005). - [14] N. Liu, X. J. Xu, W. Tong, and G. Q, Yan, Chin. J. Chem. Phys. 19, 173 (2006). - [15] P. Carretta, M. Mariani, C. B. Azzoni, M. C. Mozzati, I. Bradaric, I. Savic, A. Feher, and J. Sebek, Phys. Rev. B70, 024409 (2004). - [16] X. H. Li, Y. H. Huang, Z. M. Wang, and C. H. Yan, Appl. Phys. Lett. 81, 307 (2002). - [17] W. Kim, K. Kawaguchi, N. Koshizaki, M. Sohma, and T. Matsumoto, J. Appl. Phys. 93, 8032 (2003). - [18] S. K. Ren, F. M. Zhang, and Y. W. Du, Prog. Phys. 24, 381 (2004). - [19] X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, Acta. Phys. Sinica, 54, 313 (2005). - [20] H. T. Jeng and G. Y. Guo, Phys. Rev. B 65, 094429 (2002). - [21] C. M. Aerts, P. Strange, M. Horne, W. M. Temmerman, Z. Szotek, and A. Svane, Phy. Rev. B 69, 045115 (2004). - [22] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks, and H. Winter, Phy. Rev. B 68, 054415 (2003). - [23] M. C. Qian, C. Y. Fong, K. Liu, W. E. Pickett, J. E. Pask, and L. H. Yang, Phy. Rev. Lett. 96, 027211-1 (2006). - [24] J. J. Attema, G. A. de Wijs, and R. A. de Groot, J. Phys. D: Appl. Phys. 39, 793 (2006) - [25] Y. D. Li and C. K. Wang, Chin. J. Chem. Phys. 16, 363 (2003). - [26] W. D. Xue, Y. R. Li, and C. Yang, Chin. J. Chem. Phys. 18, 179 (2005). - [27] Z. H. Zhu, M. Z. Ma, G. Jiang, and A. D. Xie, Chin. J. Chem. Phys. 18, 962 (2005). - [28] A. Nazzal and A. Qteish, Phys. Rev. B53, 8262 (1996). - [29] L. Z. Sun, X. S. Chen, X. H. Zhou, Y. L. Sun, and Wei Lu, Eur. Phys. J. D34, 47 (2005). - [30] J. Schrier and L. W. Wang, Phys. Rev. B73, 245332 (2006). - [31] T. S. Li, J. W. Morris, and D. C. Chrzan, Phys. Rev. B73, 024105 (2006). - [32] R. Li, C. G. Chen, G. M. Liang, and D. M. Yu, Chin. J. Chem. Phys. 16, 567 (2004). - [33] L. G. Wu, A. Y. Li, and Z. Z. Zhu, Chin. J. Chem. Phys. 14, 181 (2003). - [34] Z. Zhou, T. Y. Yan, and X. P. Gao, Acta Phys. Chem. Sin. 26, 1168 (2006). - [35] D. W. Zhang, F. T. Jin, and J. M. Yuan, Chin. Phys. Lett. 283, 1876 (2006).