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Vibrational Spectra of Nonrigid Molecule HCP in an Algebraic Model
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An algebraic Hamiltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP
was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of
harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the
conventional model by fitting the observed data of HCP.
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I. INTRODUCTION

The experimental data provided by modern spec-
troscopy techniques [1,2] are changed from the broad
spectrum to the level structure and the time evolu-
tion of highly excited vibrational states, which moti-
vated the development of the corresponding theoretical
approaches. Those approaches such as ab initio cal-
culations [3,4], an extended local-mode model [5,6], a
nonlinear theory [7,8] and Lie algebraic methods [9-13]
have given a good fit to the vibrational spectra of poly-
atomic molecules, and some important physical quanti-
ties such as band intensities and potential-energy sur-
faces have been satisfactorily analyzed and interpreted.
Among those algebraic methods, the U(2) algebraic
model has been extended and applied to polyatomic
molecules, such as an algebraic force-field expansion ap-
proach for XY2 molecules [14], a symmetry-adopted al-
gebraic model for X3 systems [15] and a modified vibron
model for XY2 [16,17] and XY4 [18]. Those studies show
that the convergence of the algebraic model is much
faster than that of the conventional model. In present
work, we shall demonstrate that a bending vibrational
mode is easily taken into account in the U(2) algebraic
model, and use this model to study the stretch and
bend vibrational spectra of floppy HCP molecules. Fit-
ting experimental vibrational levels gives a direct corre-
spondence of the algebraic parameters with the conven-
tional spectroscopic constants. It shows that the stan-
dard deviation by the U(2) algebraic model is smaller
than that by the conventional model expressed in terms
of harmonic oscillator operators.

The equilibrium structure of the electronic ground
state of HCP is linear. Thus each vibrational level
can be specified by using four quantum numbers
(v1, v2

l, v3), where v1, v2, v3, and l are the quantum
numbers for CH stretch, degenerate bend, CP stretch,
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and vibrational angular momentum, respectively. Since
only the l=0 levels were observed and there were no
experimental observations of highly excited vibrational
levels with v1 6=0 [19-21], we shall concentrate on the
bend and CP stretch vibrational spectrum of the elec-
tronic ground state of HCP. The stretching oscillator is
the Morse one, and the bending oscillator has Pöschl-
Teller potential. However, the expression for the eigen-
values of the bound states is identical for the two poten-
tials after the null energy is removed. Thus the Hamil-
tonian of the Morse or Pöschl-Teller oscillator can be
realized in terms of the U(2) algebra [22]. The alge-
braic zero-order Hamiltonian for the bend and stretch
vibrations in HCP is defined in terms of a set of the
U(2) algebraic operators, in which matrix

Ĥ0 = ω2Ĉ2 + ω3Ĉ3 + x22Ĉ2Ĉ2 + x23Ĉ2Ĉ3

+ x33Ĉ3Ĉ3 + y222Ĉ2Ĉ2Ĉ2 + y223Ĉ2Ĉ2Ĉ3

+ y233Ĉ2Ĉ3Ĉ3 + y333Ĉ3Ĉ3Ĉ3 (1)

where ω2, ω3, x22, x23, x33, y222, y223, y233 and y333 rep-
resent molecular parameters that will be determined by
a least-squares fit, with the subscripts 2 and 3 denoting
the bending and the stretching modes, and Ĉi (i=2,3) is
the algebraic operators of which matrix elements in the
U(2) anharmonic oscillator states, |Ni, vi〉, are given by
[14],

〈Ni, v
′
i|Ĉi|Ni, vi〉 = (vi − v2

i /Ni)δv′i,vi
(2)

where Ni, the vibron number, is related to the num-
ber of bound states for the corresponding anharmonic
oscillator, and vi represents the vibrational quantum
number.

For HCP, it is well known that there are 1:2 Fermi
resonances between the stretch and the bend. Those
anharmonic resonances create interaction Hamiltonian
as,

Ĥf = (λf1 + λf2Ĉ2 + λf3Ĉ3)(Â
†
2Â

†
2Â3 + Â†3Â2Â2) (3)

where λfi (i=1,2,3) are Fermi coupling parameters, and
Â†i and Âi are the algebraic operators, of which matrix
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TABLE I Parameters in the algebraic Hamiltonian Eq.(5) for HCP (in cm−1)

ω2 ω3 x22 x23 x33 y222 y223 y233 y333 λf1 λf2 λf3

Ref.[19] 671.360 1284.629 −2.503 −2.953 −3.814 −0.026 −0.113 −0.109 −0.053 6.046 −0.484 0.276

This work 668.875 1280.536 −0.004 −3.634 −0.160 −0.059 −0.113 −0.121 −0.091 5.985 −0.071 0.126

elements in the |Ni, vi〉 are given by,

〈Ni, v
′
i|Â†i |Ni, vi〉 =

√
(vi + 1)

(
1− vi

Ni

)
δv′i,vi+1

〈Ni, v
′
i|Âi|Ni, vi〉 =

√
vi

(
1− vi − 1

Ni

)
δv′i,vi−1

(4)

The matrix elements of Hamiltonian Ĥf are the off-
diagonal matrix ones.

Now, the full algebraic quantum effective Hamilto-
nian for HCP is

Ĥ = Ĥ0 + Ĥf (5)

where two properties of the Hamiltonian are worthwhile
to mention. The first property is that since the anhar-
monic resonance creates the polyad structure, a polyad
quantum number, P , defined as P = v2 + 2v3, is con-
served. Thus the vibrational levels having the same P
interact with each other. When the interaction among
the zero-order states in a polyad becomes sufficiently
strong, labeling the vibrational levels by conventional
v2 and v3 loses its meaning. Therefore, following Field
et al. [19], we use P and k to refer the eigenstates, where
k represents the energy rank in each polyad and runs
from 0 to P/2. The second property is that the Hamilto-
nian in the harmonic limit reduces to the corresponding
one expressed in terms of the harmonic oscillators. In-
deed, it can be easily shown that the matrix elements of
Ĉi, Â†i , and Âi become those of the harmonic oscillator
Hamiltonian, respectively.

The observed vibrational data for HCP are taken
from Refs.[19-21]. In the best fitting the two vibron
number, N2 and N3, are respectively taken to be 380
and 420. By least-squares optimization, we have deter-
mined the best values of the parameters occurring in
Eq.(5). They are labeled with b and given in Table I,
where the parameters obtained in Ref.[19] in the har-
monic limit, N2→∞ and N3→∞, labeled a, are listed
for comparison. Our results for the calculated vibra-
tional levels of HCP are presented in Table II, where
we give a compilation of the observed experimental data
(Eobs) and the difference (∆Ecal = Eobs − Ecal). For
comparison, the differences between the experimental
data and the results of Field et al. [19] are included
in Table II. To get an estimate of the precision of both
methods, we give at the bottom of the table the stan-
dard deviation between observed and calculated data,

σ2 =
1

o− p

o∑

i=1

(
Ei

cal − Ei
obs

)2
(6)

where o is the number of observed data and p is the
number of parameters used in the fitting. In our case
σ is 3.4 cm−1 with 12 parameters, while Field et al.
showed it is 3.9 cm−1 [19]. This shows that our algebraic
model has a little better performance in reproducing the
experimentally known vibrational band origins of HCP.

In conclusion, a U(2) algebraic model has been in-
troduced and applied to calculate the vibrational levels
of the stretching and bending modes of HCP, in which
the anharmonic interactions between the stretch and
the bend are taken into account. The model in a limit
reduces to the model expressed in terms of harmonic
oscillator operators. It shows that the U(2) model can
better reproduce the data than the corresponding model
by fitting the observed data. The similar conclusion can
be applied to other polyatomic molecules, and results
will be discussed elsewhere.

With the obtained parameters for HCP, it is possi-
ble to study the potential-energy surfaces, the corre-
sponding classical bifurcation, the dynamical evolution
of highly excited states [23], and entanglement dynam-
ics [24] between stretching and bending models.
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