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By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was
calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.
The influences of a few factors such as the component materials, the filling fraction of scatterers and the
ratio (RHL) of the scatterer’s height to its length on the band-gaps of phononic crystals were investigated.
It is found that in the three-dimension solid phononic crystals with FCC structure, the optimum case to
obtain band-gaps is to embed high-velocity and high-density scatterers in a low-velocity and low-density
host. The maximum value of band-gap can be obtained when the filling fraction is in the middle value. It
is also found that the symmetry of the scatterers strongly influences the band-gaps. For RHL≥1, the width
of the band-gap decreases as RHL increases. On the contrary, the width of the band-gap increases with the
increase of RHL when RHL is smaller than 1.
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I. INTRODUCTION

The periodic composites have attracted a great deal
of attentions in recent years [1-10]. It is well known
that theoretic basis of the semiconductor is the energy
band theory. When the electrons propagate in the peri-
odical potential field, the band structure (i.e. the con-
duction band and the forbidden band) will form, and
the electrons can only move freely in the conduction
band. People can design and modulate the band-gaps
by adjusting the physical parameter in a semiconductor
super lattice, and thus promote the development of the
semiconductor science and technology. Earlier in 1960s,
it was found that the propagation of light-waves in the
periodic dielectric structure is similar to that of electron
in the semiconductor. If the wavelength of electromag-
netic wave has the same order of magnitude as the pe-
riodicity of the dielectric structure, the band structure,
called photon band, will appear. The gap between pho-
ton bands is called photon band-gap, in which the light
wave can not propagate, and the corresponding mate-
rials are called photonic crystals. Recently, the simi-
lar research has been extended to the propagation of
elastic/acoustic waves in the periodic composites called
phononic crystals. Because elastic/acoustic wave is a
full vector and each component includes three inde-
pendent parameters, namely, the mass of density, the
transverse and longitudinal speed of sound. Thus, the
research on phononic crystals is of greater physical sig-
nificance [1-4].
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The research on the band structure of periodic com-
posites and the propagation of elastic (acoustic) waves
in different periodic composites is very important. It
will help us realize the influences of the different com-
ponents and the structures of phononic crystals on the
band structure and will help us understand the theory
of the phononic crystals. These theories will guide us
to design new function materials to satisfy our needs.

At present, several methods such as the plane-wave-
expansion method [1-7], finite-difference-time-domain
method, multiple scattering theory, transfer matrix and
variational approach are used to calculate the band
structure of phononic crystals. It has been found that
band-gaps can be influenced by the following factors [1-
7,9]: (i) the ratio of mass density, sound velocity and
impedance of the scatterers to those of the host(ii) the
geometrical size and the filling fraction of the scatterers
and (iii) the topology of the scatterers in the crystal. In
this work, the band structure of binary three-dimension
(3-D) phononic crystals is calculated by using the plane-
wave-expansion method. The band-gaps of 3-D com-
posites which consist of cuboid scatterers (A) arranged
in a face-centered-cubic (FCC) structure in host (B)
are calculated. Comparisons are made among the bad-
gaps of 3-D phononic crystals which are composed of
different component materials. The influences of some
factors such as the filling fraction of scatterer and the
ratio of the scatterer’s height to its length on the band
structure are investigated.

II. MODEL AND FORMULA

The basic idea of the plane-wave-expansion method
is to expand the density and elastic coefficient of mate-
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rial to the superposition of plane wave in reciprocal-
lattice vectors space. Then the acoustic wave equa-
tion is translated into an eigen equation. By solving
this equation, we can get the dispersion relations of the
spreading phonon.

The three-dimension phononic crystal is composed of
various shapes of scatterers embedded in a host. Re-
gardless of the factor of time, the three-dimension elas-
tic wave equation in a medium with local isotropy can
be written as the following:

(λ + 2µ)∇(∇ · −→u )− µ∇×∇×−→u + ρω2−→u = 0 (1)

In a rectangular coordinate system, equation (1) can be
rewritten as follows [1,4,7]:
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where ui(i = x, y, z) are the Cartesian components of
the displacement vector −→u (−→r ), xl(l = x, y, z) are the
Cartesian components of the position vectors −→r , λ(−→r )
and u(−→r ) are Lamé coefficients, ρ(−→r ) is mass density.
λ, µ and ρ(−→r ) are periodic functions of −→r :

f(−→r +
−→
R ) = f(−→r ) (3)

In Eq.(3),
−→
R = n1

−→a 1 +n2
−→a 2 +n3

−→a 3, in which n1, n2,
n3 are integers, −→a 1, −→a 2, −→a 3 are crystals lattice basis
vector. f(−→r ) stands for λ(−→r ), µ(−→r ) or ρ−1(−→r ). Owing
to its periodicity, it can be expanded in a 3-D Fourier
series:
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The summation extends over all the reciprocal vec-
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Reciprocal vector
−→
G is a periodic function with the

same periodicity as the phononic crystals. Owing to
the common periodicity of all the coefficients in Eq.(3)
and (4), its eigenvalues, according to the Bloch’s theo-
rem, can be written as the follows:

−→u (−→r ) = ei
−→
K ·−→r −→u −→

K
(−→r ) (6)

where
−→
K is a 3-D Bloch vector which is restricted within

the first Brillouin zone (BZ) (Fig.1), and −→u K(−→r ) is a
periodic function of −→r just like λ, µ and ρ. −→u K(−→r )
can also be expanded into Fourier series according to
Eq.(4). Thus, we have,
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Substituting Eq.(4)(with f = λ, µ, ρ−1) and Eq.(7) into
Eq.(2), we can obtain:
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In this work, we have investigated the binary 3-D
phononic crystals, in which every unit cell is composed
of two materials. One is the scatterer and the other
is the host. They are labeled with A and B respec-
tively. Thus material A(B) can be characterized by the
parameters ρA(ρB), µA(µB) and λA(λB). We specified
the occupancy ration of the volume of each material by
F (for A) and 1−F (for B) respectively. The Fourier co-
efficients in Eq.(4) now take a particularly simple form
and can be written as,

f−→
G

=
1
V

∫
f(−→r )exp(−i

−→
G · −→r )d3−→r (9)

The integration covers the unit cell, V is the volume of
the unit cell. We define a structure function P (

−→
G), and

P (
−→
G) =

1
V

∫
exp(−i
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G · −→r )d3−→r (10)

where the integration only covers the volume of scatter-
ers A. It is found that the form of the structure function
P (
−→
G) does not depend on the type of the Bravais lat-

tice, but on the geometry of scatterers A only. Now
Eq.(9) can be written as:

f(
−→
G) = fAF + fB(1− F ) ≡ f (

−→
G = 0) (11)
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If the scatterers are cuboids with l1 in length, l2 in
width and l3 in height, we can write the structure func-
tion P (

−→
G) as the following,
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(13)
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By using Eqs.(11) and (12), it is not difficult to
rewrite Eq.(8) in the form of a standard eigenvalue
equation. If the infinite series in Eqs.(4) and (7) are
approximated by a sum of M reciprocal vectors, Eq.(8)
can be reduced to a 3M × 3M matrix eigenvalue equa-
tion about 3M unknown coefficients ui−→

K+
−→
G

(i = x, y, z).
This equation can be solved by a numerical method and
the desired precision can be achieved by increasing the
value of M . To a given wave vector

−→
K in the first BZ,

an infinite number of eigenvalues can be obtained, ev-
ery of which is characterized by a natural number n.
The corresponding eigen frequency is ωK,n. Let

−→
K scan

the irreducible BZ, we can get the band structure by
solving the eigenvalue equation. The value of

−→
K is usu-

ally focused on the middle and edge of the first BZ. We
illustrate the first BZ of 3-D face-centered-cube lattice
in Fig.1, in which

−→
K is varied along straight segments

UL-LΓ-ΓX-XW -WK.

FIG. 1 Frist Brillouin-zone of three-dimensional face-center-
cube lattic(FCC)

III. NUMERICAL RESULTS

Firstly, we have calculated the band gaps of a 3-D
periodic system which is composed of an Au cuboid
scatterer embedded in Epoxy with FCC structure. The
corresponding physical parameters are listed in Table I.
In our calculation, m1, m2 and m3 are permitted to take
the integer values between −3 and +3. Then Eq.(8) be-
come a 1029×1029 matrix elements, thus, a very good
convergence can be obtained. When

−→
K varies along the

high symmetric straight segments of the first BZ, we
can obtain a series curves of

−→
K vs. ωK,n. The band

structure for a=4.0 cm, F=0.3 and l1=l2, l3=1.1l1 is
shown in Fig.2(a), where the abscissa stands for the di-
mensionless Bloch wave vector of high-symmetry points
in the first BZ and the ordinate stands for normalized
frequency Ω = ωa/(2πCt), in which a is the lattice con-
stant, ω is the angular frequency and Ct is the trans-
verse velocities in the host. In the lowest 25 bands, we
found a relative band-gap which located between the
sixth and the seventh band. The normalized frequency
of the mid-gap is Ωg ≈ 1.41, the value of gap/mid-gap

frequency is ∆Ω/Ωg = 0.4565, and the value of the nor-
malized gap width is ∆Ω = 0.6437.

TABLE I The main physical parameters of the materials

Material ρ/(103kg/m3) Cl/(m/s) Ct/(m/s)

Epoxy 1.85 2830 1160

Si 2.33 8950 5359

Au 19.5 3360 1240

Pb 11.4 2158 860

FIG. 2 Elastic wave band structure of three-dimension sys-
tem with FCC lattice. (a) The case of Au cuboid embeded
in epoxy host. (b) The case of Pb cuboid embedded in epoxy
host. The ratio of scatterer’s height to length is 1.1/1, the
filling fraction of scatterer is 0.3, the lattice constants is
4.0 cm.

We changed the material of the scatterers by sub-
stituting Pb for Au (namely Pb/epoxy system). Pb
cuboids are arranged periodically in an FCC lattice
within an Epoxy host and the other parameters are
fixed. The calculated results of the band structure
are shown in Fig.2(b). It is found that a band-
gap also appears between the sixth and the seventh
band, and the parameters of the band-gap are Ωg=1.13,
∆Ω/Ωg=0.148 and ∆Ω=0.168. If we substitute silicon
for Epoxy (Au/Si system) and keep the other param-
eters the same as Au/Epoxy system mentioned above,
no band-gap appears.
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FIG. 3 The relative width of the gap, ∆Ω/Ωg versus the
filling fraction of the scatterer. B and C curves correspond
to Au/epoxy and Pb/epoxy system.

FIG. 4 The relative width of the gap, ∆Ω/Ωg, versus the
ratio of scatterer’s height to length for Au/epoxy system.

The influence of the filling fraction of the scatter-
ers on phononic band-gaps was also studied. The rela-
tion between the band-gap width ∆Ω/Ωg and the fill-
ing fraction F is shown in Fig.3. The curve marked B
(or C) represents Au (or Pb) cuboid embedded in the
Epoxy host with a FCC structure. It is found that the
Au/Epoxy system always produces a larger gap than
that of the Pb/Epoxy system for any filling fraction.
It is remarkable that a complete gap opens up over a
large range of filling fraction (0.08≤F≤0.53) in case B.
The range of filling fraction is 0.09≤F≤0.45 for us to
obtain a gap in case C. The largest gap in both cases
corresponds to the middle-filling fraction F ≈ 0.28.

In addition, we choose the Au/epoxy system to in-
vestigate the influence of the ratio of cuboid scatter-
ers’ height to its length (l3/l1) on gap width. Let
RHL=l3/l1, the dependence of ∆Ω/Ωg on RHL is
showed in Fig.4. It shows that the maximum value of
∆Ω/Ωg appears when RHL=1, and the gap disappears

on the condition of RHL<0.4 and RHL>2.5. When
0.4<RHL<1, the gap-width increases rapidly with the
increase of RHL, while on the condition of 1<RHL<2.5,
the gap-width decreases slowly with the increase of
RHL.

IV. CONCLUSIONS

By using the plane-wave-expansion method, we calcu-
lated the band structure of the binary three-dimensional
solid phononic crystals consisting of cuboid scatterers
embedded in a host. The scatterers are arranged in
face-centered-cubic structure. Several factors, which
help to obtain band-gaps and influence on the prop-
erties of band-gaps are investigated. The results show
(i) Scatterers with High-velocity and high-density em-
bedded in a host with low-velocity, and low-density pro-
vide an optimum situation to obtain large band-gaps.
(ii) The symmetry of scatterers has a great influence on
the band-gaps. For example, cube scatterers are more
favorable than cuboid scatterers for band-gaps. The
higher the symmetry of scatterers, the easier the ap-
pearance of band-gaps. (iii) The widest gap can be ob-
tained when the filling fraction is in the middle value. If
we choose appropriate physical parameters of the com-
posites, we can obtain wider band-gaps.
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